COMMON FIXED POINT THEOREMS FOR A CLASS OF WEAKLY COMPATIBLE MAPPINGS IN D-METRIC SPACES

Jong Kyu Kim, Shaban Sedghi and Nabi Shobe

Abstract

In this paper, we give some new definitions of D-metric spaces and we prove a common fixed point theorem for a class of mappings under the condition of weakly compatible mappings in complete D-metric spaces. We get some improved versions of several fixed point theorems in complete D-metric spaces.

1. Introduction and preliminaries

In 1922, the Polish mathematician, Banach proved a theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point. His result is called Banach's fixed point theorem or the Banach contraction principle. This theorem provides a technique for solving a variety of applied problems in mathematical science and engineering. Many authors have extended, generalized and improved Banach's fixed point theorem in different ways. In [11], Jungck introduced more generalized commuting mappings, called compatible mappings, which are more general than commuting and weakly commuting mappings. This concept has been useful for obtaining more comprehensive fixed point theorems(see, e.g.,($[1,2,3,4,6,8,9,12,13,14,16])$. One such generalization is generalized metric space or D-metric space initiated by Dhage [5] in 1992. He proved some results on fixed points for a self-map satisfying a contraction for complete and bounded D-metric spaces. Rhoades [11] generalized Dhage's contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self-map in a D-metric space. Recently, motivated by the concept of compatibility for a metric space, Singh and Sharma [15] introduced the concept of D-compatibility of maps in a D-metric space and proved some fixed point theorems using a contractive condition.
In what follows \mathbb{N} the set of all natural numbers, and \mathbb{R}^{+}the set of all positive real numbers.

[^0]Definition 1.1. Let X be a nonempty set. A generalized metric (or D-metric) on X is a function $D: X^{3} \longrightarrow \mathbb{R}^{+}$that satisfies the following conditions for each $x, y, z, a \in X$.
(1) $D(x, y, z) \geq 0$,
(2) $D(x, y, z)=0$ if and only if $x=y=z$,
(3) $D(x, y, z)=D(p\{x, y, z\})$, (symmetry) where p is a permutation function,
(4) $D(x, y, z) \leq D(x, y, a)+D(a, z, z)$.

The pair (X, D) is called a generalized metric (or D-metric) space.
It is easy to show that the following functions D are D-metric.
(a) $D(x, y, z)=\max \{d(x, y), d(y, z), d(z, x)\}$,
(b) $D(x, y, z)=d(x, y)+d(y, z)+d(z, x)$,
where, d is the ordinary metric on X.
(c) If $X=\mathbb{R}^{n}$ then we define

$$
D(x, y, z)=\left(\|x-y\|^{p}+\|y-z\|^{p}+\|z-x\|^{p}\right)^{\frac{1}{p}}
$$

for every $p \in \mathbb{R}^{+}$.
(d) If $X=\mathbb{R}^{+}$then we define

$$
D(x, y, z)= \begin{cases}0 & \text { if } x=y=z \\ \max \{x, y, z\} & \text { otherwise }\end{cases}
$$

Remark 1.2. Let (X, D) be a D-metric space. Then we have $D(x, x, y)=$ $D(x, y, y)$. Since
(i) $D(x, x, y) \leq D(x, x, x)+D(x, y, y)=D(x, y, y)$
and
(ii) $D(y, y, x) \leq D(y, y, y)+D(y, x, x)=D(y, x, x)$. We get $D(x, x, y)=D(x, y, y)$.

Let (X, D) be a D-metric space. For $r>0$ define

$$
B_{D}(x, r)=\{y \in X: D(x, y, y)<r\} .
$$

Example 1.3. Let $X=\mathbb{R}$ and $D(x, y, z)=|x-y|+|y-z|+|z-x|$ for all $x, y, z \in \mathbb{R}$. Then,

$$
\begin{aligned}
B_{D}(1,2)=\{y \in \mathbb{R}: D(1, y, y)<2\} & =\{y \in \mathbb{R}:|y-1|+|y-1|<2\} \\
& =\{y \in \mathbb{R}:|y-1|<1\}=(0,2) .
\end{aligned}
$$

Definition 1.4. Let (X, D) be a D-metric space and $A \subset X$.
(1) A is said to be open if for every $x \in A$ there exist $r>0$ such that $B_{D}(x, r) \subset A$.
(2) A is said to be D-bounded if there exists $r>0$ such that $D(x, y, y)<r$ for all $x, y \in A$.
(3) A sequence $\left\{x_{n}\right\}$ in X converges to x if and only if

$$
D\left(x_{n}, x_{n}, x\right)=D\left(x, x, x_{n}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. That is, for each $\epsilon>0$ there exist $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall n \geq n_{0} \Longrightarrow D\left(x, x, x_{n}\right)<\epsilon \tag{*}
\end{equation*}
$$

This is equivalent with, for each $\epsilon>0$ there exist $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall n, m \geq n_{0} \Longrightarrow D\left(x, x_{n}, x_{m}\right)<\epsilon . \tag{**}
\end{equation*}
$$

Indeed, suppose that $\left({ }^{*}\right)$ hods. Then

$$
D\left(x_{n}, x_{m}, x\right)=D\left(x_{n}, x, x_{m}\right) \leq D\left(x_{n}, x, x\right)+D\left(x, x_{m}, x_{m}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\varepsilon
$$

Conversely, set $m=n$ in ($* *$) we have $D\left(x_{n}, x_{n}, x\right)<\epsilon$.
(4) $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if for each $\epsilon>0$, there exits $n_{0} \in \mathbb{N}$ such that $D\left(x_{n}, x_{n}, x_{m}\right)<\epsilon$ for each $n, m \geq n_{0}$. The D-metric space (X, D) is said to be complete if every Cauchy sequence in X is convergent.

Let τ be the set of all open subset of X. Then τ is a topology on X induced by the D-metric D.

Lemma 1.5. Let (X, D) be a D-metric space. If $r>0$, then ball $B_{D}(x, r)$ with center $x \in X$ and radius r is open.

Proof. Let $z \in B_{D}(x, r)$. Then $D(x, z, z)<r$. If set $D(x, z, z)=\delta$ and $r^{\prime}=r-\delta$ then we prove that $B_{D}\left(z, r^{\prime}\right) \subseteq B_{D}(x, r)$. Let $y \in B_{D}\left(z, r^{\prime}\right)$. Then, by triangular inequality, we have $D(x, y, y)=D(y, y, x) \leq D(y, y, z)+D(z, x, x)<$ $r^{\prime}+\delta=r$. Hence $B_{D}\left(z, r^{\prime}\right) \subseteq B_{D}(x, r)$. This implies that $B_{D}(x, r)$ is open ball.

Lemma 1.6. Let (X, D) be a D-metric space. If sequence $\left\{x_{n}\right\}$ in X converges to x, then it is unique.

Proof. Let $x_{n} \longrightarrow y$ and $y \neq x$. Since $\left\{x_{n}\right\}$ converges to x and y, for each $\epsilon>0$ there exist $n_{1}, n_{2} \in \mathbb{N}$ such that for every $n \geq n_{1}, D\left(x, x, x_{n}\right)<\frac{\epsilon}{2}$, and for every $n \geq n_{2}, D\left(y, y, x_{n}\right)<\frac{\epsilon}{2}$. If set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for every $n \geq n_{0}$ we have

$$
D(x, x, y) \leq D\left(x, x, x_{n}\right)+D\left(x_{n}, y, y\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\varepsilon .
$$

Hence $D(x, x, y)=0$, which is a contradiction. So, $x=y$.
Lemma 1.7. Let (X, D) be a D-metric space. If the sequence $\left\{x_{n}\right\}$ in X is convergent to x, then it is a Cauchy sequence.

Proof. Since $x_{n} \longrightarrow x$, for each $\epsilon>0$ there exists $n_{1}, n_{2} \in \mathbb{N}$ such that for every $n \geq n_{1}, D\left(x_{n}, x_{n}, x\right)<\frac{\epsilon}{2}$, and for every $m \geq n_{2}, D\left(x, x_{m}, x_{m}\right)<\frac{\epsilon}{2}$. If set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for every $n, m \geq n_{0}$ we have

$$
D\left(x_{n}, x_{n}, x_{m}\right) \leq D\left(x_{n}, x_{n}, x\right)+D\left(x, x_{m}, x_{m}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Hence sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.

Definition 1.8. Let (X, D) be a D-metric space. D is said to be a continuous function on X^{3} if

$$
\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}, z_{n}\right)=D(x, y, z)
$$

where a sequence $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}$ in X^{3} converges to a point $(x, y, z) \in X^{3}$, i.e.,

$$
\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y, \lim _{n \rightarrow \infty} z_{n}=z
$$

Lemma 1.9. Let (X, D) be a D-metric space. Then D is continuous function on X^{3}.

Proof. If the sequence $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}$ in X^{3} converges to a point $(x, y, z) \in X^{3}$, i.e.,

$$
\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y, \lim _{n \rightarrow \infty} z_{n}=z
$$

then for each $\epsilon>0$ there exist $n_{1}, n_{2}, n_{3} \in \mathbb{N}$ such that for every $n \geq n_{1}$, $D\left(x, x, x_{n}\right)<\frac{\epsilon}{3}$, for every $n \geq n_{2}, D\left(y, y, y_{n}\right)<\frac{\epsilon}{3}$, and for every $n \geq n_{3}$, $D\left(z, z, z_{n}\right)<\frac{\epsilon}{3}$. If set $n_{0}=\max \left\{n_{1}, n_{2}, n_{3}\right\}$, then for every $n \geq n_{0}$ we have

$$
\begin{aligned}
D\left(x_{n}, y_{n}, z_{n}\right) & \leq D\left(x_{n}, y_{n}, z\right)+D\left(z, z_{n}, z_{n}\right) \\
& \leq D\left(x_{n}, z, y\right)+D\left(y, y_{n}, y_{n}\right)+D\left(z, z_{n}, z_{n}\right) \\
& \leq D(z, y, x)+D\left(x, x_{n}, x_{n}\right)+D\left(y, y_{n}, y_{n}\right)+D\left(z, z_{n}, z_{n}\right) \\
& <D(x, y, z)+\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3} \\
& =D(x, y, z)+\epsilon .
\end{aligned}
$$

Hence we have

$$
D\left(x_{n}, y_{n}, z_{n}\right)-D(x, y, z)<\epsilon .
$$

On the other hand,

$$
\begin{aligned}
D(x, y, z) & \leq D\left(x, y, z_{n}\right)+D\left(z_{n}, z, z\right) \\
& \leq D\left(x, z_{n}, y_{n}\right)+D\left(y_{n}, y, y\right)+D\left(z_{n}, z, z\right) \\
& \leq D\left(z_{n}, y_{n}, x_{n}\right)+D\left(x_{n}, x, x\right)+D\left(y_{n}, y, y\right)+D\left(z_{n}, z, z\right) \\
& <D\left(x_{n}, y_{n}, z_{n}\right)+\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3} \\
& =D\left(x_{n}, y_{n}, z_{n}\right)+\epsilon .
\end{aligned}
$$

That is,

$$
D(x, y, z)-D\left(x_{n}, y_{n}, z_{n}\right)<\epsilon .
$$

Therefore we have $\left|D\left(x_{n}, y_{n}, z_{n}\right)-D(x, y, z)\right|<\epsilon$, that is

$$
\lim _{n \rightarrow \infty} D\left(x_{n}, y_{n}, z_{n}\right)=D(x, y, z)
$$

Hence D is a continuous function.

Definition 1.10. Let (X, D) is a D-metric space. Then D is called of first type if for every $x, y \in X$ we have

$$
D(x, x, y) \leq D(x, y, z)
$$

for every $z \in X$.
In 1998, Jungck and Rhoades [8] introduced the following concept of weak compatibility.

Definition 1.11. Let A and S be mappings from a D-metric space (X, D) into itself. Then the pair (A, S) is said to be weak compatible if they commute at their coincidence point, that is, $A x=S x$ implies that $A S x=S A x$.

2. The main results

Our main result, for a complete D-metric space X, reads follows:
Theorem 2.1. Let A, B, C, S, T and R be self-mappings of a complete D metric space (X, D) where D is first type with :
(i) $A(X) \subseteq T(X), B(X) \subseteq S(X), C(X) \subseteq R(X)$ and $A(X)$ or $B(X)$ or $C(X)$ is a closed subset of X,
(ii) $D(A x, B y, C z)$

$$
\begin{aligned}
\leq & \alpha D(R x, T y, S z)+\beta \max \{D(R x, A x, B y), D(T y, B y, C z), D(S z, C z, A x)\} \\
& +\gamma(D(R x, B y, T y)+D(T y, C z, S z)+D(S z, A x, R x))
\end{aligned}
$$

where $\alpha, \beta, \gamma \geq 0$ and $\alpha+\beta+3 \gamma<1$, for every $x, y, z \in X$,
(iii) the pairs $(A, R),(B, T)$ and (S, C) are weak compatible.

Then A, B, C, S, T and R have a unique common fixed point in X.
Proof. Let $x_{0} \in X$ be an arbitrary point. By (i), there exists $x_{1}, x_{2}, x_{3} \in X$ such that

$$
A x_{0}=T x_{1}=y_{0}, B x_{1}=S x_{2}=y_{1} \text { and } C x_{2}=R x_{3}=y_{2} .
$$

Inductively, construct sequence $\left\{y_{n}\right\}$ in X such that

$$
\begin{aligned}
& y_{3 n}=A x_{3 n}=T x_{3 n+1}, \quad y_{3 n+1}=B x_{3 n+1}=S x_{3 n+2} \quad \text { and } \\
& y_{3 n+2}=C x_{3 n+2}=R x_{3 n+3},
\end{aligned}
$$

for $n=0,1,2, \cdots$.
Now, we prove $\left\{y_{n}\right\}$ is a Cauchy sequence. Let $d_{m}=D\left(y_{m}, y_{m+1}, y_{m+2}\right)$. Then, we have

$$
\begin{aligned}
d_{3 n}= & D\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right) \\
= & D\left(A x_{3 n}, B x_{3 n+1}, C x_{3 n+2}\right) \\
\leq & \alpha D\left(R x_{3 n}, T x_{3 n+1}, S x_{3 n+2}\right) \\
& +\beta \max \left\{D\left(R x_{3 n}, A x_{3 n}, B x_{3 n+1}\right), D\left(T x_{3 n+1}, B x_{3 n+1}, C x_{3 n+2}\right),\right. \\
& \left.D\left(S x_{3 n+2}, C x_{3 n+2}, A x_{3 n}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\gamma\left(D\left(R x_{3 n}, B x_{3 n+1}, T x_{3 n+1}\right)\right. \\
+ & D\left(T x_{3 n+1}, C x_{3 n+2}, S x_{3 n+2}\right) \\
= & \left.\alpha D\left(S x_{3 n+2}, A x_{3 n}, R x_{3 n}\right)\right) \\
& +\beta 8 \max \left\{D\left(y_{3 n-1}, y_{3 n}, y_{3 n+1}\right)\right. \\
& +\gamma\left(D\left(y_{3 n-1}, y_{3 n+1}\right),\right. \\
= & D\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right), \\
= & \left.\alpha\left(y_{3 n+1}, y_{3 n+2}, y_{3 n-1}\right)\right\} \\
& \left.\beta \max \left\{d_{3 n-1}, d_{3 n}, d_{3 n}\right\}+\gamma\left(y_{3 n}, y_{3 n+2}, y_{3 n+1}\right)+D\left(y_{3 n+1}, y_{3 n}, y_{3 n-1}\right)\right) \\
& \left.+d_{3 n}+d_{3 n-1}\right) .
\end{aligned}
$$

We prove that $d_{3 n} \leq d_{3 n-1}$, for every $n \in \mathbb{N}$. If $d_{3 n}>d_{3 n-1}$ for some $n \in \mathbb{N}$, by above inequality we have

$$
d_{3 n} \leq \alpha d_{3 n}+\beta d_{3 n}+3 \gamma d_{3 n}=(\alpha+\beta+3 \gamma) d_{3 n}<d_{3 n}
$$

which is a contradiction. Now, if $m=3 n+1$, then

$$
\begin{aligned}
d_{3 n+1}= & D\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+3}\right) \\
= & D\left(y_{3 n+3}, y_{3 n+1}, y_{3 n+2}\right) \\
= & D\left(A x_{3 n+3}, B x_{3 n+1}, C x_{3 n+2}\right) \\
\leq & \alpha D\left(R x_{3 n+3}, T x_{3 n+1}, S x_{3 n+2}\right)+\beta \max \left\{D\left(R x_{3 n+3}, A x_{3 n+3}, B x_{3 n+1}\right),\right. \\
& \left.D\left(T x_{3 n+1}, B x_{3 n+1}, C x_{3 n+2}\right), D\left(S x_{3 n+2}, C x_{3 n+2}, A x_{3 n+3}\right)\right\} \\
& +\gamma\left(D\left(R x_{3 n+3}, B x_{3 n+1}, T x_{3 n+1}\right)+D\left(T x_{3 n+1}, C x_{3 n+2}, S x_{3 n+2}\right)\right. \\
& \left.+D\left(S x_{3 n+2}, A x_{3 n+3}, R x_{3 n+3}\right)\right) \\
= & \alpha D\left(y_{3 n+2}, y_{3 n}, y_{3 n+1}\right) \quad \\
& +\beta \max \left\{D\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+1}\right), D\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right)\right. \\
& \left.D\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+3}\right)\right\} \\
& +\gamma\left(D\left(y_{3 n+2}, y_{3 n+1}, y_{3 n}\right)+D\left(y_{3 n}, y_{3 n+2}, y_{3 n+1}\right)\right. \\
& \left.\quad+D\left(y_{3 n+1}, y_{3 n+3}, y_{3 n+2}\right)\right) \\
= & \alpha d_{3 n}+\beta \max \left\{d_{3 n+1}, d_{3 n}, d_{3 n+1}\right\}+\gamma\left(d_{3 n}+d_{3 n}+d_{3 n+1}\right) .
\end{aligned}
$$

Similarly, if $d_{3 n+1}>d_{3 n}$ for some $n \in \mathbb{N}$ we have $d_{3 n+1}<d_{3 n+1}$ which is a contradiction. If $m=3 n+2$, then

$$
\begin{aligned}
d_{3 n+2}= & D\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+4}\right)=D\left(y_{3 n+3}, y_{3 n+4}, y_{3 n+2}\right) \\
= & D\left(A x_{3 n+3}, B x_{3 n+4}, C x_{3 n+2}\right) \\
\leq & \alpha D\left(R x_{3 n+3}, T x_{3 n+4}, S x_{3 n+2}\right) \\
& +\beta \max \left\{D\left(R x_{3 n+3}, A x_{3 n+3}, B x_{3 n+4}\right), D\left(T x_{3 n+4}, B x_{3 n+4}, C x_{3 n+2}\right),\right. \\
& \left.\quad D\left(S x_{3 n+2}, C x_{3 n+2}, A x_{3 n+3}\right)\right\} \\
& +\gamma\left(D\left(R x_{3 n+3}, B x_{3 n+4}, T x_{3 n+4}\right)+D\left(T x_{3 n+4}, C x_{3 n+2}, S x_{3 n+2}\right)\right. \\
& \left.+D\left(S x_{3 n+2}, A x_{3 n+3}, R x_{3 n+3}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \alpha D\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+1}\right) \\
& +\beta \max \left\{D\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+4}\right), D\left(y_{3 n+3}, y_{3 n+4}, y_{3 n+2}\right)\right. \\
& \left.\quad D\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+3}\right)\right\} \\
& +\gamma\left(D\left(y_{3 n+2}, y_{3 n+4}, y_{3 n+3}\right)+D\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+1}\right)\right. \\
& \left.+D\left(y_{3 n+1}, y_{3 n+3}, y_{3 n+2}\right)\right) \\
= & \alpha d_{3 n+1}+\beta \max \left\{d_{3 n+2}, d_{3 n+2}, d_{3 n+1}\right\}+\gamma\left(d_{3 n+2}+d_{3 n+1}+d_{3 n+1}\right) .
\end{aligned}
$$

Similarly, if $d_{3 n+2}>d_{3 n+1}$ for some $n \in \mathbb{N}$ we have $d_{3 n+2}<d_{3 n+2}$ which is a contradiction. Hence for every $n \in \mathbb{N}$ we have $d_{n} \leq d_{n-1}$. Thus by above inequalities we have $d_{n} \leq q d_{n-1}$, where $q=\alpha+\beta+3 \gamma<1$. That is

$$
d_{n}=D\left(y_{n}, y_{n+1}, y_{n+2}\right) \leq q D\left(y_{n-1}, y_{n}, y_{n+1}\right) \leq \cdots \leq q^{n} D\left(y_{0}, y_{1}, y_{2}\right)
$$

Since D is of first type, we have

$$
D\left(y_{n}, y_{n}, y_{n+1}\right) \leq q^{n} D\left(y_{0}, y_{1}, y_{2}\right)
$$

Therefore

$$
\begin{aligned}
D\left(y_{n}, y_{n}, y_{m}\right) \leq & D\left(y_{n}, y_{n}, y_{n+1}\right)+D\left(y_{n+1}, y_{n+1}, y_{n+2}\right)+\cdots \\
& +D\left(y_{m-1}, y_{m-1}, y_{m}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
D\left(y_{n}, y_{n}, y_{m}\right) & \leq q^{n} D\left(y_{0}, y_{1}, y_{2}\right)+q^{n+1} D\left(y_{0}, y_{1}, y_{2}\right)+\cdots+q^{m-1} D\left(y_{0}, y_{1}, y_{2}\right) \\
& =\frac{q^{n}-q^{m}}{1-q} D\left(y_{0}, y_{1}, y_{2}\right) \\
& \leq \frac{q^{n}}{1-q} D\left(y_{0}, y_{1}, y_{2}\right) \longrightarrow 0 .
\end{aligned}
$$

So, sequence $\left\{y_{n}\right\}$ is Cauchy in X and $\left\{y_{n}\right\}$ converges to y in X. That is, $\lim _{n \rightarrow \infty} y_{n}=y$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} y_{n} & =\lim _{n \rightarrow \infty} A x_{3 n}=\lim _{n \rightarrow \infty} B x_{3 n+1}=\lim _{n \rightarrow \infty} C x_{3 n+2} \\
& =\lim _{n \rightarrow \infty} T x_{3 n+1}=\lim _{n \rightarrow \infty} R x_{3 n+3}=\lim _{n \rightarrow \infty} S x_{3 n+2}=y .
\end{aligned}
$$

Let $C(X)$ be a closed subset of X. Then there exist $u \in X$ such that $R u=y$. We prove that $A u=y$. For

$$
\begin{aligned}
& D\left(A u, B x_{3 n+1}, C x_{3 n+2}\right) \\
& \leq \alpha D\left(R u, T x_{3 n+1}, S x_{3 n+2}\right) \\
& \quad+\beta \max \left\{D\left(R u, A u, B x_{3 n+1}\right), D\left(T x_{3 n+1}, B x_{3 n+1}, C x_{3 n+2}\right),\right. \\
& \\
& \left.\quad D\left(S x_{3 n+2}, C x_{3 n+2}, A u\right)\right\} \\
& +\gamma\left(D\left(R u, B x_{3 n+1}, T x_{3 n+1}\right)+D\left(T x_{3 n+1}, C x_{3 n+2}, S x_{3 n+2}\right)\right. \\
& \left.+D\left(S x_{3 n+2}, A u, R u\right)\right) .
\end{aligned}
$$

Letting $n \longrightarrow \infty$, we get

$$
\begin{aligned}
D(A u, y, y) \leq & \alpha D(R u, y, y)+\beta \max \{D(R u, A u, y), D(y, y, y), D(y, y, A u)\} \\
& +\gamma(D(R u, y, y)+D(y, y, y)+D(y, A u, R u))
\end{aligned}
$$

If $D(y, y, A u)>0$, then we have $D(A u, y, y)<D(y, y, A u)$, which is a contradiction. Thus $A u=y$. By weak compatibility of the pair (R, A), we have $A R u=R A u$, hence $A y=R y$. We prove that $A y=y$, if $A y \neq y$, then

$$
\begin{aligned}
& D\left(A y, B x_{3 n+1}, C x_{3 n+2}\right) \\
& \leq \alpha D\left(R y, T x_{3 n+1}, S x_{3 n+2}\right) \\
& \quad+\beta \max \left\{D\left(R y, A y, B x_{3 n+1}\right), D\left(T x_{3 n+1}, B x_{3 n+1}, C x_{3 n+2}\right),\right. \\
& \\
& \left.\quad D\left(S x_{3 n+2}, C x_{3 n+2}, A x\right)\right\} \\
& +\gamma\left(D\left(R y, B x_{3 n+1}, T x_{3 n+1}\right)+D\left(T x_{3 n+1}, C x_{3 n+2}, S x_{3 n+2}\right)\right. \\
& \\
& \left.\quad+D\left(S x_{3 n+2}, A y, R y\right)\right) .
\end{aligned}
$$

Letting $n \longrightarrow \infty$, we have

$$
\begin{aligned}
D(A y, y, y) \leq & \alpha D(R y, y, y)+\beta \max \{D(R y, A y, y), D(y, y, y), D(y, y, A y)\} \\
& +\gamma(D(R y, y, y)+D(y, y, y)+D(y, A y, R y)) .
\end{aligned}
$$

This is a contradiction. Therefore, $R y=A y=y$, that is, y is a common fixed of R and A. Since $y=A y \in A(X) \subseteq R(X)$, there exist $v \in X$ such that $T v=y$. We prove that $B v=y$. For

$$
\begin{aligned}
D\left(y, B v, C x_{3 n+2}\right)= & D\left(A y, B v, C x_{3 n+2}\right) \\
\leq & \alpha D\left(R y, T v, S x_{3 n+2}\right) \\
& +\beta \max \left\{D(R y, A y, B v), D\left(T v, B v, C x_{3 n+2}\right),\right. \\
& \left.\quad D\left(S x_{3 n+2}, C x_{3 n+2}, A y\right)\right\} \\
& +\gamma\left(D(R y, B v, T v)+D\left(T v, C x_{3 n+2}, S x_{3 n+2}\right)\right. \\
& \left.+D\left(S x_{3 n+2}, A y, R y\right)\right)
\end{aligned}
$$

Letting $n \longrightarrow \infty$ we get

$$
\begin{aligned}
D(y, B v, y) \leq & \alpha D(y, T v, y)+\beta \max \{D(y, y, B v), D(T v, B v, y), D(y, y, y)\} \\
& +\gamma(D(y, B v, T v)+D(T v, y, y)+D(y, y, y)) .
\end{aligned}
$$

Thus $B v=y$. By weak compatibility of the pair (B, T) we have $T B v=B T v$, hence $B y=T y$. We prove that $B y=y$, if $B y \neq y$, then

$$
\begin{aligned}
D\left(A y, B y, C x_{3 n+2}\right) \leq & \alpha D\left(R y, T y, S x_{3 n+2}\right) \\
& +\beta \max \left\{D(R y, A y, B y), D\left(T y, B y, C x_{3 n+2}\right)\right. \\
& \left.D\left(S x_{3 n+2}, C x_{3 n+2}, A y\right)\right\} \\
& +\gamma\left(D(R y, B y, T y)+D\left(T y, C x_{3 n+2}, S x_{3 n+2}\right)\right. \\
& \left.+D\left(S x_{3 n+2}, A y, R y\right)\right) .
\end{aligned}
$$

Letting $n \longrightarrow \infty$ we have

$$
\begin{aligned}
D(y, B y, y) \leq & \alpha D(y, T y, y)+\beta \max \{D(y, y, B y), D(T y, B y, y), D(y, y, y)\} \\
& +\gamma(D(y, B y, T y)+D(T y, y, y)+D(y, y, y)) .
\end{aligned}
$$

This is a contradiction. Therefore, $B y=T y=y$, that is, y is a common fixed of B and T. Similarly, since $y=B y \in B(X) \subseteq S(X)$, there exist $w \in X$ such that $S w=y$. We prove that $C w=y$. For

$$
\begin{aligned}
D(y, y, C w)= & D(A y, B y, C w) \\
\leq & \alpha D(R y, T y, S w) \\
& +\beta \max \{D(R y, A y, B y), D(T y, B y, C w), D(S w, C w, A y)\} \\
& +\gamma(D(R y, B y, T y)+D(T y, C w, S w)+D(S w, A y, R y)) .
\end{aligned}
$$

Thus $C w=y$. By weak compatibility the pair (C, S) we have $C S w=S C w$, hence $C y=S y$. We prove that $C y=y$, if $C y \neq y$, then

$$
\begin{aligned}
D(y, y, C y)= & D(A y, B y, C y) \\
\leq & \alpha D(R y, T y, S y) \\
& +\beta \max \{D(R y, A y, B y), D(T y, B y, C y), D(S y, C y, A y)\} \\
& +\gamma(D(R y, B y, T y)+D(T y, C y, S y)+D(S y, A y, R y)) .
\end{aligned}
$$

This is a contradiction. Therefore, $C y=S y=y$, that is, y is a common fixed of C and S. Thus

$$
A y=S y=T y=B y=C y=R y=y
$$

Now, we have to prove the uniqueness. Let v be another common fixed point of T, A, B, C, R, S.
If $D(y, y, v)>0$, then

$$
\begin{aligned}
D(y, y, v)= & D(A y, B y, C v)) \\
\leq & \alpha D(R y, T y, S v) \\
& +\beta \max \{D(R y, A y, B y), D(T y, B y, C v), D(S v, C v, A y)\} \\
& +\gamma(D(R y, B y, T y)+D(T y, C v, S v)+D(S v, A y, R y)) .
\end{aligned}
$$

this is a contradiction. Therefore, $y=v$.

Corollary 2.2. Let S, T, R and $\left\{A_{\alpha}\right\}_{\alpha \in I},\left\{B_{\beta}\right\}_{\beta \in J}$ and $\left\{C_{\gamma}\right\}_{\gamma \in K}$ be the set of all self-mappings of a complete D-metric space (X, D), where D is of first type satisfying.
(i) there exists $\alpha_{0} \in I, \beta_{0} \in J$ and $\gamma_{0} \in K$ such that $A_{\alpha_{0}}(X) \subseteq T(X)$, $B_{\beta_{0}}(X) \subseteq S(X)$ and $C_{\gamma_{0}}(X) \subseteq R(X)$,
(ii) $\quad A_{\alpha_{0}}(X), B_{\beta_{0}}(X)$ or $C_{\gamma_{0}}(X)$ is a closed subset of X,
(iii) $D\left(A_{\alpha} x, B_{\beta} y, C_{\gamma} z\right)$

$$
\begin{aligned}
\leq & a_{1} D(R x, T y, S z) \\
& +b_{1} \max \left\{D\left(R x, A_{\alpha} x, B_{\beta} y\right), D\left(T y, B_{\beta} y, C_{\gamma} z\right), D\left(S z, C_{\gamma} z, A_{\alpha} x\right)\right\} \\
& +c_{1}\left(D\left(R x, B_{\beta} y, T y\right)+D\left(T y, C_{\gamma} z, S z\right)+D\left(S z, A_{\alpha} x, R x\right)\right)
\end{aligned}
$$

where $a_{1}, b_{1}, c_{1} \geq 0$ and $a_{1}+b_{1}+3 c_{1}<1$, for every $x, y, z \in X$ and for every $\alpha \in I, \beta \in J, \gamma \in K$,
(iv) the pairs $\left(A_{\alpha_{0}}, R\right),\left(B_{\beta_{0}}, T\right)$ or $\left(C_{\gamma_{0}}, S\right)$ are weak compatible. Then A, B, C, S, T and R have a unique common fixed point in X.

Proof. By Theorem $2.1 R, S, T$ and $A_{\alpha_{0}}, B_{\beta_{0}}$ and $C_{\gamma_{0}}$ for some $\alpha_{0} \in I, \beta_{0} \in J$, $\gamma_{0} \in K$ have a unique common fixed point in X. That is, there exist a unique $a \in X$ such that $R(a)=S(a)=T(a)=A_{\alpha_{0}}(a)=B_{\beta_{0}}(a)=C_{\gamma_{0}}(a)=a$. Let there exist $\lambda \in J$ such that $\lambda \neq \beta_{0}$ and $D\left(a, B_{\lambda} a, a\right)>0$. Then we have

$$
\begin{aligned}
& D\left(a, B_{\lambda} a, a\right) \\
& =D\left(A_{\alpha_{0}} a, B_{\lambda} a, C_{\gamma_{0}} a\right) \\
& \leq a_{1} D(R a, T a, S a) \\
& \quad+b_{1} \max \left\{D\left(R a, A_{\alpha_{0}} a, B_{\beta} a\right), D\left(T a, B_{\beta} a, C_{\gamma_{0}} a\right), D\left(S a, C_{\gamma_{0}} a, A_{\alpha_{0}} a\right)\right\} \\
& \quad+c_{1}\left(D\left(R a, B_{\beta} a, T a\right)+D\left(T a, C_{\gamma_{0}} a, S a\right)+D\left(S a, A_{\alpha_{0}} a, R a\right)\right),
\end{aligned}
$$

which is a contradiction. Hence for every $\lambda \in J$ we have $B_{\lambda}(a)=a$. Similarly for every $\delta \in I$ and $\eta \in K$ we get $A_{\delta}(a)=C_{\eta}(a)=a$. Therefore for every $\delta \in I, \lambda \in J$ and $\eta \in K$ we have $A_{\delta}(a)=B_{\lambda}(a)=C_{\eta}(a)=R(a)=S(a)=$ $T(a)=a$.

References

[1] N. A. Assad and S. Sessa, Common fixed points for nonself-maps on compacta, SEA Bull. Math. 16, (1992), 1-5.
[2] N. Chandra, S. N. Mishra, S. L. Singh and B. E. Rhoades, Coincidences and fixed points of nonexpansive type multi-valued and single-valued maps, Indian J. Pure Appl. Math. 26, (1995), 393-401.
[3] Y. J. Cho, P. P. Murthy and G. Jungck, A common fixed point theorem of Meir and Keeler type, Internat. J. Math. Sci. 16, (1993), 669-674.
[4] R. O. Davies and S. Sessa, A common fixed point theorem of Gregus type for compatible mappings, Facta Univ. (Nis) Ser. Math. Inform. 7, (1992), 51-58.
[5] B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84, no. 4, (1992), 329-336.
[6] J. Jachymski, Common fixed point theorems for some families of maps, Indian J. Pure Appl. Math. 55, (1994), 925-937.
[7] Jungck G., Commuting maps and fixed points, Amer Math Monthly 1976; 83: 261-3.
[8] Jungck G and Rhoades B. E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29, no. 3, (1998), 227-238.
[9] S. M. Kang, Y. J.Cho and G. Jungck, Common fixed points of compatible mappings, Internat. J. Math. Math. Sci. 13, (1990), 61-66.
[10] MiheţD., A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Sys 2004; 144: 431-9.
[11] B. E. Rhoades, A fixed point theorem for generalized metric spaces, Int. J. Math. Math. Sci., 19, no. 1, (1996), 145-153.
[12] B. E. Rhoades, K. Tiwary and G. N. Singh, A common fixed point theorem for compatible mappings, Indian J. Pure Appl. Math. 26 (5), (1995), 403-409.
[13] S. Sessa and Y. J. Cho, Compatible mappings and a common fixed point theorem of change type, Publ. Math. Debrecen 43 (3-4), (1993), 289-296.
[14] S. Sessa, B. E. Rhoades and M. S. Khan, On common fixed points of compatible mappings, Internat. J. Math. Math. Sci. 11, (1988), 375-392.
[15] B. Singh and R. K. Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat. 11, no. 1, (2002), 145-153.
[16] K. Tas, M. Telci and B. Fisher, Common fixed point theorems for compatible mappings, Internat. J. Math. Math. Sci. 19 (3), (1996), 451-456.
J. K. Kim

Department of Mathematics Education
Kyungnam University
Masan, 631-701, Korea
E-mail address: jongkyuk@kyungnam.ac.kr
S. Sedghi

Department of Mathematics
Islamic Azad University-Ghaemshar Branch
Iran
E-mail address: sedghi_gh@yahoo.com
N. Shobe

Department of Mathematics
Islamic Azad University-Babol Branch
Iran
E-mail address: nabi_shobe@yahoo.com

[^0]: Received December 30, 2008, Accepted January 10, 2008.
 2000 Mathematics Subject Classification. 54E40, 54E35, 54H25.
 Key words and phrases. D-metric contractive mapping, complete D-metric space, common fixed point.

 The corresponding author: jongkyuk@kyungnam.ac.kr.
 This work was supported by the Kyungnam university Research Fund 2008.

