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COMMON FIXED POINT THEOREMS FOR A CLASS OF
WEAKLY COMPATIBLE MAPPINGS IN D-METRIC SPACES

Jong Kyu Kim, Shaban Sedghi and Nabi Shobe

Abstract. In this paper, we give some new definitions of D-metric spaces
and we prove a common fixed point theorem for a class of mappings un-

der the condition of weakly compatible mappings in complete D-metric

spaces. We get some improved versions of several fixed point theorems in
complete D-metric spaces.

1. Introduction and preliminaries

In 1922, the Polish mathematician, Banach proved a theorem which ensures,
under appropriate conditions, the existence and uniqueness of a fixed point. His
result is called Banach’s fixed point theorem or the Banach contraction princi-
ple. This theorem provides a technique for solving a variety of applied problems
in mathematical science and engineering. Many authors have extended, gen-
eralized and improved Banach’s fixed point theorem in different ways. In [11],
Jungck introduced more generalized commuting mappings, called compatible
mappings, which are more general than commuting and weakly commuting
mappings. This concept has been useful for obtaining more comprehensive
fixed point theorems(see, e.g.,( [1, 2, 3, 4, 6, 8, 9, 12, 13, 14, 16]). One such
generalization is generalized metric space or D-metric space initiated by Dhage
[5] in 1992. He proved some results on fixed points for a self-map satisfying a
contraction for complete and bounded D-metric spaces. Rhoades [11] gener-
alized Dhage’s contractive condition by increasing the number of factors and
proved the existence of unique fixed point of a self-map in a D-metric space. Re-
cently, motivated by the concept of compatibility for a metric space, Singh and
Sharma [15] introduced the concept of D-compatibility of maps in a D-metric
space and proved some fixed point theorems using a contractive condition.
In what follows N the set of all natural numbers, and R+ the set of all positive
real numbers.
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Definition 1.1. Let X be a nonempty set. A generalized metric (or D-metric)
on X is a function D : X3 −→ R+ that satisfies the following conditions for
each x, y, z, a ∈ X.

(1) D(x, y, z) ≥ 0,
(2) D(x, y, z) = 0 if and only if x = y = z,
(3) D(x, y, z) = D(p{x, y, z}), (symmetry) where p is a permutation

function,
(4) D(x, y, z) ≤ D(x, y, a) +D(a, z, z).

The pair (X,D) is called a generalized metric (or D-metric) space.

It is easy to show that the following functions D are D-metric.
(a) D(x, y, z) = max{d(x, y), d(y, z), d(z, x)},
(b) D(x, y, z) = d(x, y) + d(y, z) + d(z, x),

where, d is the ordinary metric on X.
(c) If X = Rn then we define

D(x, y, z) = (||x− y||p + ||y − z||p + ||z − x||p)
1
p

for every p ∈ R+.
(d) If X = R+ then we define

D(x, y, z) =
{

0 if x = y = z,
max{x, y, z} otherwise.

Remark 1.2. Let (X,D) be a D-metric space. Then we have D(x, x, y) =
D(x, y, y). Since

(i) D(x, x, y) ≤ D(x, x, x) +D(x, y, y) = D(x, y, y)
and

(ii)D(y, y, x) ≤ D(y, y, y) +D(y, x, x) = D(y, x, x).
We get D(x, x, y) = D(x, y, y).

Let (X,D) be a D-metric space. For r > 0 define

BD(x, r) = {y ∈ X : D(x, y, y) < r}.

Example 1.3. Let X = R and D(x, y, z) = |x − y| + |y − z| + |z − x| for all
x, y, z ∈ R. Then,

BD(1, 2) = {y ∈ R : D(1, y, y) < 2} = {y ∈ R : |y − 1|+ |y − 1| < 2}
= {y ∈ R : |y − 1| < 1} = (0, 2).

Definition 1.4. Let (X,D) be a D-metric space and A ⊂ X.
(1) A is said to be open if for every x ∈ A there exist r > 0 such that

BD(x, r) ⊂ A.
(2) A is said to be D-bounded if there exists r > 0 such that D(x, y, y) < r

for all x, y ∈ A.
(3) A sequence {xn} in X converges to x if and only if

D(xn, xn, x) = D(x, x, xn)→ 0
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as n→∞. That is, for each ε > 0 there exist n0 ∈ N such that

(∗) ∀n ≥ n0 =⇒ D(x, x, xn) < ε.

This is equivalent with, for each ε > 0 there exist n0 ∈ N such that

(∗∗) ∀n,m ≥ n0 =⇒ D(x, xn, xm) < ε.

Indeed, suppose that (*) hods. Then

D(xn, xm, x) = D(xn, x, xm) ≤ D(xn, x, x) +D(x, xm, xm) <
ε

2
+
ε

2
= ε.

Conversely, set m = n in (∗∗) we have D(xn, xn, x) < ε.
(4) {xn} in X is called a Cauchy sequence if for each ε > 0, there exits

n0 ∈ N such that D(xn, xn, xm) < ε for each n,m ≥ n0. The D-metric space
(X,D) is said to be complete if every Cauchy sequence in X is convergent.

Let τ be the set of all open subset of X. Then τ is a topology on X induced
by the D-metric D.

Lemma 1.5. Let (X,D) be a D-metric space. If r > 0, then ball BD(x, r)
with center x ∈ X and radius r is open.

Proof. Let z ∈ BD(x, r). Then D(x, z, z) < r. If set D(x, z, z) = δ and
r′ = r−δ then we prove that BD(z, r′) ⊆ BD(x, r). Let y ∈ BD(z, r′). Then, by
triangular inequality, we have D(x, y, y) = D(y, y, x) ≤ D(y, y, z)+D(z, x, x) <
r′ + δ = r. Hence BD(z, r′) ⊆ BD(x, r). This implies that BD(x, r) is open
ball. �

Lemma 1.6. Let (X,D) be a D-metric space. If sequence {xn} in X converges
to x, then it is unique.

Proof. Let xn −→ y and y 6= x. Since {xn} converges to x and y, for each
ε > 0 there exist n1, n2 ∈ N such that for every n ≥ n1, D(x, x, xn) < ε

2 , and
for every n ≥ n2, D(y, y, xn) < ε

2 . If set n0 = max{n1, n2}, then for every
n ≥ n0 we have

D(x, x, y) ≤ D(x, x, xn) +D(xn, y, y) <
ε

2
+
ε

2
= ε.

Hence D(x, x, y) = 0, which is a contradiction. So, x = y. �

Lemma 1.7. Let (X,D) be a D-metric space. If the sequence {xn} in X is
convergent to x, then it is a Cauchy sequence.

Proof. Since xn −→ x, for each ε > 0 there exists n1, n2 ∈ N such that for
every n ≥ n1, D(xn, xn, x) < ε

2 , and for every m ≥ n2, D(x, xm, xm) < ε
2 . If

set n0 = max{n1, n2}, then for every n,m ≥ n0 we have

D(xn, xn, xm) ≤ D(xn, xn, x) +D(x, xm, xm) <
ε

2
+
ε

2
= ε.

Hence sequence {xn} is a Cauchy sequence. �
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Definition 1.8. Let (X,D) be a D-metric space. D is said to be a continuous
function on X3 if

lim
n→∞

D(xn, yn, zn) = D(x, y, z),

where a sequence {(xn, yn, zn)} in X3 converges to a point
(x, y, z) ∈ X3, i.e.,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z.

Lemma 1.9. Let (X,D) be a D- metric space. Then D is continuous function
on X3.

Proof. If the sequence {(xn, yn, zn)} in X3 converges to a point
(x, y, z) ∈ X3, i.e.,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z,

then for each ε > 0 there exist n1, n2, n3 ∈ N such that for every n ≥ n1,
D(x, x, xn) < ε

3 , for every n ≥ n2, D(y, y, yn) < ε
3 , and for every n ≥ n3,

D(z, z, zn) < ε
3 . If set n0 = max{n1, n2, n3}, then for every n ≥ n0 we have

D(xn, yn, zn) ≤ D(xn, yn, z) +D(z, zn, zn)
≤ D(xn, z, y) +D(y, yn, yn) +D(z, zn, zn)
≤ D(z, y, x) +D(x, xn, xn) +D(y, yn, yn) +D(z, zn, zn)

< D(x, y, z) +
ε

3
+
ε

3
+
ε

3
= D(x, y, z) + ε.

Hence we have
D(xn, yn, zn)−D(x, y, z) < ε.

On the other hand,

D(x, y, z) ≤ D(x, y, zn) +D(zn, z, z)
≤ D(x, zn, yn) +D(yn, y, y) +D(zn, z, z)
≤ D(zn, yn, xn) +D(xn, x, x) +D(yn, y, y) +D(zn, z, z)

< D(xn, yn, zn) +
ε

3
+
ε

3
+
ε

3
= D(xn, yn, zn) + ε.

That is,
D(x, y, z)−D(xn, yn, zn) < ε.

Therefore we have |D(xn, yn, zn)−D(x, y, z)| < ε, that is

lim
n→∞

D(xn, yn, zn) = D(x, y, z).

Hence D is a continuous function. �
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Definition 1.10. Let (X,D) is a D-metric space. Then D is called of first
type if for every x, y ∈ X we have

D(x, x, y) ≤ D(x, y, z)

for every z ∈ X.

In 1998, Jungck and Rhoades [8] introduced the following concept of weak
compatibility.

Definition 1.11. Let A and S be mappings from a D-metric space (X,D)
into itself. Then the pair (A,S) is said to be weak compatible if they commute
at their coincidence point, that is, Ax = Sx implies that ASx = SAx.

2. The main results

Our main result, for a complete D-metric space X, reads follows:

Theorem 2.1. Let A,B,C, S, T and R be self-mappings of a complete D-
metric space (X,D) where D is first type with :

(i)A(X) ⊆ T (X), B(X) ⊆ S(X), C(X) ⊆ R(X) and A(X) or B(X) or
C(X) is a closed subset of X,

(ii) D(Ax,By,Cz)

≤ αD(Rx, Ty, Sz) + βmax{D(Rx,Ax,By), D(Ty,By,Cz), D(Sz,Cz,Ax)}
+ γ(D(Rx,By, Ty) +D(Ty,Cz, Sz) +D(Sz,Ax,Rx))

where α, β, γ ≥ 0 and α+ β + 3γ < 1, for every x, y, z ∈ X,
(iii) the pairs (A,R) , (B, T ) and (S,C) are weak compatible.

Then A,B,C, S, Tand R have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. By (i), there exists x1, x2, x3 ∈ X
such that

Ax0 = Tx1 = y0, Bx1 = Sx2 = y1 and Cx2 = Rx3 = y2.

Inductively, construct sequence {yn} in X such that

y3n = Ax3n = Tx3n+1, y3n+1 = Bx3n+1 = Sx3n+2 and
y3n+2 = Cx3n+2 = Rx3n+3,

for n = 0, 1, 2, · · · .
Now, we prove {yn} is a Cauchy sequence. Let dm = D(ym, ym+1, ym+2).

Then, we have

d3n = D(y3n, y3n+1, y3n+2)

= D(Ax3n, Bx3n+1, Cx3n+2)

≤ αD(Rx3n, Tx3n+1, Sx3n+2)

+ βmax{D(Rx3n, Ax3n, Bx3n+1), D(Tx3n+1, Bx3n+1, Cx3n+2),

D(Sx3n+2, Cx3n+2, Ax3n)}
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+ γ(D(Rx3n, Bx3n+1, Tx3n+1) +D(Tx3n+1, Cx3n+2, Sx3n+2)

+D(Sx3n+2, Ax3n, Rx3n))

= αD(y3n−1, y3n, y3n+1)

+ β8 max{D(y3n−1, y3n, y3n+1), D(y3n, y3n+1, y3n+2),

D(y3n+1, y3n+2, y3n)}
+γ(D(y3n−1, y3n+1, y3n) +D(y3n, y3n+2, y3n+1)+D(y3n+1, y3n, y3n−1))

= αd3n−1 + βmax{d3n−1, d3n, d3n}+ γ(d3n−1 + d3n + d3n−1).

We prove that d3n ≤ d3n−1, for every n ∈ N. If d3n > d3n−1 for some n ∈ N,
by above inequality we have

d3n ≤ αd3n + βd3n + 3γd3n = (α+ β + 3γ)d3n < d3n,

which is a contradiction. Now, if m = 3n+ 1, then

d3n+1 = D(y3n+1, y3n+2, y3n+3)

= D(y3n+3, y3n+1, y3n+2)

= D(Ax3n+3, Bx3n+1, Cx3n+2)

≤ αD(Rx3n+3, Tx3n+1, Sx3n+2) + βmax{D(Rx3n+3, Ax3n+3, Bx3n+1),

D(Tx3n+1, Bx3n+1, Cx3n+2), D(Sx3n+2, Cx3n+2, Ax3n+3)}
+ γ(D(Rx3n+3, Bx3n+1, Tx3n+1) +D(Tx3n+1, Cx3n+2, Sx3n+2)

+D(Sx3n+2, Ax3n+3, Rx3n+3))

= αD(y3n+2, y3n, y3n+1)

+ βmax{D(y3n+2, y3n+3, y3n+1), D(y3n, y3n+1, y3n+2),

D(y3n+1, y3n+2, y3n+3)}
+ γ(D(y3n+2, y3n+1, y3n) +D(y3n, y3n+2, y3n+1)

+D(y3n+1, y3n+3, y3n+2))

= αd3n + βmax{d3n+1, d3n, d3n+1}+ γ(d3n + d3n + d3n+1).

Similarly, if d3n+1 > d3n for some n ∈ N we have d3n+1 < d3n+1 which is a
contradiction. If m = 3n+ 2, then

d3n+2 = D(y3n+2, y3n+3, y3n+4) = D(y3n+3, y3n+4, y3n+2)

= D(Ax3n+3, Bx3n+4, Cx3n+2)

≤ αD(Rx3n+3, Tx3n+4, Sx3n+2)

+ βmax{D(Rx3n+3, Ax3n+3, Bx3n+4), D(Tx3n+4, Bx3n+4, Cx3n+2),

D(Sx3n+2, Cx3n+2, Ax3n+3)}
+ γ(D(Rx3n+3, Bx3n+4, Tx3n+4) +D(Tx3n+4, Cx3n+2, Sx3n+2)

+D(Sx3n+2, Ax3n+3, Rx3n+3))
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= αD(y3n+2, y3n+3, y3n+1)

+ βmax{D(y3n+2, y3n+3, y3n+4), D(y3n+3, y3n+4, y3n+2),

D(y3n+1, y3n+2, y3n+3)}
+ γ(D(y3n+2, y3n+4, y3n+3) +D(y3n+3, y3n+2, y3n+1)

+D(y3n+1, y3n+3, y3n+2))

= αd3n+1 + βmax{d3n+2, d3n+2, d3n+1}+ γ(d3n+2 + d3n+1 + d3n+1).

Similarly, if d3n+2 > d3n+1 for some n ∈ N we have d3n+2 < d3n+2 which is
a contradiction. Hence for every n ∈ N we have dn ≤ dn−1. Thus by above
inequalities we have dn ≤ qdn−1, where q = α+ β + 3γ < 1. That is

dn = D(yn, yn+1, yn+2) ≤ qD(yn−1, yn, yn+1) ≤ · · · ≤ qnD(y0, y1, y2).

Since D is of first type, we have

D(yn, yn, yn+1) ≤ qnD(y0, y1, y2).

Therefore

D(yn, yn, ym) ≤ D(yn, yn, yn+1) +D(yn+1, yn+1, yn+2) + · · ·
+D(ym−1, ym−1, ym).

Hence

D(yn, yn, ym) ≤ qnD(y0, y1, y2) + qn+1D(y0, y1, y2) + · · ·+ qm−1D(y0, y1, y2)

=
qn − qm

1− q
D(y0, y1, y2)

≤ qn

1− q
D(y0, y1, y2) −→ 0.

So, sequence {yn} is Cauchy in X and {yn} converges to y in X. That is,
limn→∞ yn = y,

lim
n→∞

yn = lim
n→∞

Ax3n = lim
n→∞

Bx3n+1 = lim
n→∞

Cx3n+2

= lim
n→∞

Tx3n+1 = lim
n→∞

Rx3n+3 = lim
n→∞

Sx3n+2 = y.

Let C(X) be a closed subset of X. Then there exist u ∈ X such that Ru = y.
We prove that Au = y. For

D(Au,Bx3n+1, Cx3n+2)

≤ αD(Ru, Tx3n+1, Sx3n+2)

+ βmax{D(Ru,Au,Bx3n+1), D(Tx3n+1, Bx3n+1, Cx3n+2),

D(Sx3n+2, Cx3n+2, Au)}
+ γ(D(Ru,Bx3n+1, Tx3n+1) +D(Tx3n+1, Cx3n+2, Sx3n+2)

+D(Sx3n+2, Au,Ru)).
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Letting n −→∞, we get

D(Au, y, y) ≤ αD(Ru, y, y) + βmax{D(Ru,Au, y), D(y, y, y), D(y, y, Au)}
+ γ(D(Ru, y, y) +D(y, y, y) +D(y,Au,Ru)).

If D(y, y, Au) > 0, then we have D(Au, y, y) < D(y, y, Au), which is a con-
tradiction. Thus Au = y. By weak compatibility of the pair (R,A), we have
ARu = RAu, hence Ay = Ry. We prove that Ay = y, if Ay 6= y, then

D(Ay,Bx3n+1, Cx3n+2)

≤ αD(Ry, Tx3n+1, Sx3n+2)

+ βmax{D(Ry,Ay,Bx3n+1), D(Tx3n+1, Bx3n+1, Cx3n+2),

D(Sx3n+2, Cx3n+2, Ax)}
+ γ(D(Ry,Bx3n+1, Tx3n+1) +D(Tx3n+1, Cx3n+2, Sx3n+2)

+D(Sx3n+2, Ay,Ry)).
Letting n −→∞, we have

D(Ay, y, y) ≤ αD(Ry, y, y) + βmax{D(Ry,Ay, y), D(y, y, y), D(y, y, Ay)}
+ γ(D(Ry, y, y) +D(y, y, y) +D(y,Ay,Ry)).

This is a contradiction. Therefore, Ry = Ay = y, that is, y is a common fixed
of R and A. Since y = Ay ∈ A(X) ⊆ R(X), there exist v ∈ X such that
Tv = y. We prove that Bv = y. For

D(y,Bv,Cx3n+2) = D(Ay,Bv,Cx3n+2)

≤ αD(Ry, Tv, Sx3n+2)

+ βmax{D(Ry,Ay,Bv), D(Tv,Bv,Cx3n+2),

D(Sx3n+2, Cx3n+2, Ay)}
+ γ(D(Ry,Bv, Tv) +D(Tv,Cx3n+2, Sx3n+2)

+D(Sx3n+2, Ay,Ry))
Letting n −→∞ we get

D(y,Bv, y) ≤ αD(y, Tv, y) + βmax{D(y, y,Bv), D(Tv,Bv, y), D(y, y, y)}
+ γ(D(y,Bv, Tv) +D(Tv, y, y) +D(y, y, y)).

Thus Bv = y. By weak compatibility of the pair (B, T ) we have TBv = BTv,
hence By = Ty. We prove that By = y, if By 6= y, then

D(Ay,By,Cx3n+2) ≤ αD(Ry, Ty, Sx3n+2)

+ βmax{D(Ry,Ay,By), D(Ty,By,Cx3n+2),

D(Sx3n+2, Cx3n+2, Ay)}
+ γ(D(Ry,By, Ty) +D(Ty,Cx3n+2, Sx3n+2)

+D(Sx3n+2, Ay,Ry)).
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Letting n −→∞ we have

D(y,By, y) ≤ αD(y, Ty, y) + βmax{D(y, y,By), D(Ty,By, y), D(y, y, y)}
+ γ(D(y,By, Ty) +D(Ty, y, y) +D(y, y, y)).

This is a contradiction. Therefore, By = Ty = y, that is, y is a common fixed
of B and T . Similarly, since y = By ∈ B(X) ⊆ S(X), there exist w ∈ X such
that Sw = y. We prove that Cw = y. For

D(y, y, Cw) = D(Ay,By,Cw)

≤ αD(Ry, Ty, Sw)

+ βmax{D(Ry,Ay,By), D(Ty,By,Cw), D(Sw,Cw,Ay)}
+ γ(D(Ry,By, Ty) +D(Ty,Cw, Sw) +D(Sw,Ay,Ry)).

Thus Cw = y. By weak compatibility the pair (C, S) we have CSw = SCw,
hence Cy = Sy. We prove that Cy = y, if Cy 6= y, then

D(y, y, Cy) = D(Ay,By,Cy)

≤ αD(Ry, Ty, Sy)

+ βmax{D(Ry,Ay,By), D(Ty,By,Cy), D(Sy,Cy,Ay)}
+ γ(D(Ry,By, Ty) +D(Ty,Cy, Sy) +D(Sy,Ay,Ry)).

This is a contradiction. Therefore, Cy = Sy = y, that is, y is a common fixed
of C and S. Thus

Ay = Sy = Ty = By = Cy = Ry = y.

Now, we have to prove the uniqueness. Let v be another common fixed point
of T,A,B,C,R, S.
If D(y, y, v) > 0, then

D(y, y, v) = D(Ay,By,Cv))

≤ αD(Ry, Ty, Sv)

+ βmax{D(Ry,Ay,By), D(Ty,By,Cv), D(Sv,Cv,Ay)}
+ γ(D(Ry,By, Ty) +D(Ty,Cv, Sv) +D(Sv,Ay,Ry)).

this is a contradiction. Therefore, y = v.
�

Corollary 2.2. Let S, T,R and {Aα}α∈I , {Bβ}β∈J and {Cγ}γ∈K be the set
of all self-mappings of a complete D-metric space (X,D), where D is of first
type satisfying:

(i) there exists α0 ∈ I , β0 ∈ J and γ0 ∈ K such that Aα0(X) ⊆ T (X),
Bβ0(X) ⊆ S(X) and Cγ0(X) ⊆ R(X),

(ii) Aα0(X), Bβ0(X) or Cγ0(X) is a closed subset of X,
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(iii) D(Aαx,Bβy, Cγz)

≤ a1D(Rx, Ty, Sz)

+ b1 max{D(Rx,Aαx,Bβy), D(Ty,Bβy, Cγz), D(Sz,Cγz,Aαx)}
+ c1(D(Rx,Bβy, Ty) +D(Ty,Cγz, Sz) +D(Sz,Aαx,Rx))

where a1, b1, c1 ≥ 0 and a1 + b1 + 3c1 < 1, for every x, y, z ∈ X and for every
α ∈ I, β ∈ J , γ ∈ K,

(iv) the pairs (Aα0 , R), (Bβ0 , T ) or (Cγ0 , S) are weak compatible.
Then A,B,C, S, Tand R have a unique common fixed point in X.

Proof. By Theorem 2.1 R,S, T and Aα0 , Bβ0 and Cγ0 for some α0 ∈ I, β0 ∈ J ,
γ0 ∈ K have a unique common fixed point in X. That is, there exist a unique
a ∈ X such that R(a) = S(a) = T (a) = Aα0(a) = Bβ0(a) = Cγ0(a) = a. Let
there exist λ ∈ J such that λ 6= β0 and D(a,Bλa, a) > 0. Then we have

D(a,Bλa, a)

= D(Aα0a,Bλa,Cγ0a)

≤ a1D(Ra, Ta, Sa)

+ b1 max{D(Ra,Aα0a,Bβa), D(Ta,Bβa,Cγ0a), D(Sa,Cγ0a,Aα0a)}
+ c1(D(Ra,Bβa, Ta) +D(Ta,Cγ0a, Sa) +D(Sa,Aα0a,Ra)),

which is a contradiction. Hence for every λ ∈ J we have Bλ(a) = a. Similarly
for every δ ∈ I and η ∈ K we get Aδ(a) = Cη(a) = a. Therefore for every
δ ∈ I, λ ∈ J and η ∈ K we have Aδ(a) = Bλ(a) = Cη(a) = R(a) = S(a) =
T (a) = a. �
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