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SOME CRITERION FOR CERTAIN MULTIVALENTLY
ANALYTIC FUNCTIONS AND MULTIVALENTLY
MEROMORPHIC FUNCTIONS

HUSEYIN IRMAK AND KRZYSZTOF PIEJKO

ABSTRACT. The aim of the present investigation is to give some crite-
rion for certain multivalently analytic functions and (or) multivalently
meromorphic functions in the corresponding domains.

1. Introduction and Motivation

Let the non-normalized function Q, be non-constant, analytic and univalent
in the unit open discU = {z € C : |z| < 1} such that Q,(0) = a, where a € C.

In this paper, we establish a theorem characterizing the inclusion property of
functions Q,, by using the well-known Jack’s Lemma and Nunakowa’s Lemma.
Consequences of our main result are considered for certain multivalently ana-
lytic functions and multivalently meromorphic functions in the certain domains.
See, for example, some interesting papers concerning multivalently analytic
functions, multivalently meromorphic functions and (or) certain differential in-
equalities [6-10].

First, we mention the following results which are used in the next section.

Lemma 1 (Jack’s Lemma, [4]). Let w(z) be non-constant and regular in U with
w(0) = 0. If |w(z)| attains its mazimum value on the circle |z| =7 (0 <r < 1)
at the point zo, then zow'(20) = cw(2p), where ¢ > 1.

Lemma 2 (Nunokawa’s Lemma, [5]). Let p(z) be an analytic function in U
with p(0) = 1. If there exists a point zg € U such that

Re{p(2)} >0 (|2 < z0l), Re{p(z0)} =0 and p(z0) # 0,

. zop'(z0) _ .c 1
p(20) =ib and (o) = ig <b+ b>’

then

where b # 0 and ¢ > 1.
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2. Main Result and Its Certain Applications
Using Lemmas 1 and 2 we now prove the following result.

Theorem 2.1. If the function Q, satisfies one of the following conditions:

(1) Re {ZQW) (Z)} < %

l1—a+ Qa
and
29! (2) >0 when Ref{a} >0
(2) 8?e{lq-ga(z)}{ <0 when Re{a} <0 }
then
(3) Re{Q.(2)} > Re{a} — 1,

where z € U and a € C.

Proof. Define a function w by

(4) w(z) = Qu(z) —a (a€C, ze€lU).
It is obvious that w is analytic in &/ and w(0) = 0. We find from (4) that
29! (2) zw'(2)

(5)

at 0.0 Ttul Y

Assume that there exist a point zg € U such that
lw(zo)] =1 and |w(z)] <1 when |z] < |z0| (z €U).
Then, applying Lemma 1, we have
(6) 2w’ (20) = cw(zo) (¢ =1, w(zp) =€ # —1).

From (5) and (6) we obtain

ol 290
1 —a+ Qu(2)
/ P
=Red 2 (2) —Red <L E,
1+w(z)|,_,, 1+ e 2
which obviously contradicts the condition (1) when ¢ = 1.
|lw(z)| < 1 for all z € U, that is
Qa(2) —a| = [w(z)| <1,

which implies the inequality (3).
Next, we again define a new function ¢ by

(7) q(2) =1+ Qu(2) —a (a€C, z€U).

It follows that
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Then it is easy to see that ¢ is analytic in Y with ¢(0) = 1. We have from (7)

that
2Q4(2) 2q' ()
(8) =
1+ Qu(2) a+q(z)
Suppose now that there exist a point zg € U such that
Re {q(2)} > 0 (|2 < |20]), Re{q(20)} =0, and q(z0) # 0 (z € U).

Then, by using Lemma 2, we have

(z €eU).

(9) q(z0) = b and w = Zg (b—!— 2) (b#£0, c>1).

Thus, we have from (8) and (9) that

2Q,(2) — e 204’ (20)  q(20)
%6{ z—zo} =0 { q(zO) a+q(20)}

1+ Qa(2)
B C 1\ ibla+ib)| ¢ 1+0? _

Therefore, we easily get from (10):
e 209" (20) <0 if Ref{a}>0
T+ 0u(z0) J | 20 if Re{a}<0 |
which it contradicts the condition (2). So, it follows that Re {¢(z)} > 0 for all
z € U, that is that
Re{l —a+ Qq(2)} > 0.

Hence, the proof of Theorem is completed. ([

Denote by 7 (p) and M(p), where p € N = {0,1,2,3,...}, the classes of
normalized functions f and g of the forms:

f(2) = 2P+ app1 2P+ ap02PP 4
and
g(2)=2P ta_p1z2 P da_prez PP
which are analytic and multivalent in the unit disc ¢/ and meromorphic multi-
valent in the punctured unit disc D = U \ {0}, respectively.

In order to obtain several useful results in the Analytic Function Theory
and Geometric Function Theory we apply our Theorem to the classes 7 (p) and
M(p). First we recall some well-known subclasses of 7 (p) and M(p), which
play an important role in the Geometric Function Theory (see, for details,
[1-3]):

aw 1S = {rete: ne{ L acew),
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(12)  TC(p,a) = {f eT(p): Re {1 + Z;(ij)} >al(ze U)},

W TR ={reTw: we {8} 0wl

p—

I\

(14) MS(p,a)z{feM(p); gfee{ Zf/(z)} >a(z€D)}

and

(15)  MC(p,a) = {f € M(p) ﬂ?e{—l _ Z}C(g)} Sa(ze D)},

where p e Nand 0 < a < p.

In the literature, the functions in (11) - (15) are called, respectively, mul-
tivalently starlike of order « in U, multivalently convex of order « in U/, mul-
tivalently close-to-convex of order « in U, multivalently meromorphic starlike
of order v in D and multivalently meromorphic convex of order o in D. See,
for their details, [1-3]. Now we can give some interesting and (or) important
results conserning the above well-known results:

Corollary 1. Let f € T(p) (p € N), Q1(2) := 2P f(2) and also let the function
O, satisfy the assumptions of the Theorem. Then
Re{Q:1(2)} =Re {z7Pf(2)} > 0.
Corollary 2. Let f € T(p) (p € N), Q,(2) := z'"Pf'(2) and also let the
function Q, satisfy the assumptions of the Theorem. Then
Re {Qp(2)} = Re {zlfpf/(z)} >p—1,
i.e., f€TK(p,p—1).

Corollary 3. Let f € T(p) (p € N), Qp(z) := Z;ES) and also let the function

Q,, satisfy the assumptions of the Theorem. Then

Re {Q(2)} = %e{zjjé? } apo1,

ie, f€TS(p,p—1).

Corollary 4. Let f € T(p) (p € N), Qp(2) =1+ Z}c,’%(iz)) and also let the

function Q, satisfy the assumptions of the Theorem. Then

Re{Qp(2)} = RNe { ZJJ://;(Z;) } >p—2,

ie., f€TC(p,p—1).
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Corollary 5. Let f € M(p) (p € N), Qp(2) := — Z}cég) and also let the function

Q, satisfy the assumptions of the Theorem. Then

Re{Q,(2)} = Re {—Z}c(i‘j) } "

ie., f € MS(p,p—1).

Corollary 6. Let f € M(p), (p € N), Qp(2) := —1 — &) and et also the

function Q, satisfy the assumptions of the Theorem. Then
2f"(z

- f, ( )} > q,
f'(2)

Re{Qq(2)} = 5}?6{
e, f € MC(p,p—1).

Corollary 7. Let f € T(p), g € M(q) (p,q € N) and Q;(z) := z*p*q%. If
the function Q1 satisfies the assumptions of the Theorem, then

Re {Q1(2)} = Re {Z—P—qgég} >0

Corollary 8. Let f € T(p), g € M(q) (p,q € N) and Q,%(z) = 2Pt chl,gjg If
the function Q,% satisfies the assumptions of the Theorem, then

%e{Q,%(z)} = Re {z”qm} > —% —1.

When we take p = 1 in the definitions (11) — (15), then we obtain the other
interesting subclasses: 7S(«) = TS(1,a), TC(a) = TC(1,a), TK() =
TK(1, o), MS(a) := MS(1,a) and MC(a) := MC(1,a) which consist, re-
spectively, starlike functions of order « in U, convex functions of order « in U,
close-to-convex functions of order « in U, meromorphically starlike functions
of order o in D and meromorphically convex functions of order a in D, where
0 < a < 1. See, [1-3] and (for example) [8-10]. When we choose the functions
f and (or) g of such subclasses of 7 := 7(1) and (or) M := M(1), we can
obtain a lot of results as in the Corollaries 1-8.
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