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SOME CRITERION FOR CERTAIN MULTIVALENTLY
ANALYTIC FUNCTIONS AND MULTIVALENTLY

MEROMORPHIC FUNCTIONS

Hüseyin Irmak and Krzysztof Piejko

Abstract. The aim of the present investigation is to give some crite-
rion for certain multivalently analytic functions and (or) multivalently
meromorphic functions in the corresponding domains.

1. Introduction and Motivation

Let the non-normalized function Qa be non-constant, analytic and univalent
in the unit open disc U = {z ∈ C : |z| < 1} such that Qa(0) = a, where a ∈ C.

In this paper, we establish a theorem characterizing the inclusion property of
functions Qa, by using the well-known Jack’s Lemma and Nunakowa’s Lemma.
Consequences of our main result are considered for certain multivalently ana-
lytic functions and multivalently meromorphic functions in the certain domains.
See, for example, some interesting papers concerning multivalently analytic
functions, multivalently meromorphic functions and (or) certain differential in-
equalities [6-10].

First, we mention the following results which are used in the next section.

Lemma 1 (Jack’s Lemma, [4]). Let ω(z) be non-constant and regular in U with
ω(0) = 0. If |ω(z)| attains its maximum value on the circle |z| = r (0 < r < 1)
at the point z0, then z0ω

′(z0) = cω(z0), where c ≥ 1.

Lemma 2 (Nunokawa’s Lemma, [5]). Let p(z) be an analytic function in U
with p(0) = 1. If there exists a point z0 ∈ U such that

<e {p(z)} > 0 (|z| < |z0|), <e {p(z0)} = 0 and p(z0) 6= 0,

then

p(z0) = ib and
z0p

′(z0)
p(z0)

= i
c

2

(
b +

1
b

)
,

where b 6= 0 and c ≥ 1.
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2. Main Result and Its Certain Applications

Using Lemmas 1 and 2 we now prove the following result.

Theorem 2.1. If the function Qa satisfies one of the following conditions:

<e

{
zQ′

a(z)
1− a +Qa(z)

}
<

1
2

(1)

and

<e

{
zQ′

a(z)
1 +Qa(z)

}{
> 0 when <e {a} ≥ 0
< 0 when <e {a} ≤ 0

}
(2)

then

<e {Qa(z)} > <e {a} − 1,(3)

where z ∈ U and a ∈ C.

Proof. Define a function w by

w(z) = Qa(z)− a (a ∈ C, z ∈ U).(4)

It is obvious that w is analytic in U and w(0) = 0. We find from (4) that

zQ′
a(z)

1− a +Qa(z)
=

zw′(z)
1 + w(z)

(z ∈ U).(5)

Assume that there exist a point z0 ∈ U such that

|w(z0)| = 1 and |w(z)| < 1 when |z| < |z0| (z ∈ U).

Then, applying Lemma 1, we have

z0w
′(z0) = cw(z0)

(
c ≥ 1, w(z0) = eiϕ 6= −1

)
.(6)

From (5) and (6) we obtain

<e

{
zQ′

a(z)
1− a +Qa(z)

∣∣∣∣
z=z0

}

= <e

{
zw′(z)

1 + w(z)

∣∣∣∣
z=z0

}
= <e

{
ceiϕ

1 + eiϕ

}
=

c

2
,

which obviously contradicts the condition (1) when c = 1. It follows that
|w(z)| < 1 for all z ∈ U , that is

|Qa(z)− a| = |w(z)| < 1,

which implies the inequality (3).
Next, we again define a new function q by

q(z) = 1 +Qa(z)− a (a ∈ C, z ∈ U).(7)



ANALYTIC FUNCTIONS AND MEROMORPHIC FUNCTIONS 41

Then it is easy to see that q is analytic in U with q(0) = 1. We have from (7)
that

zQ′
a(z)

1 +Qa(z)
=

zq′(z)
a + q(z)

(z ∈ U).(8)

Suppose now that there exist a point z0 ∈ U such that

<e {q(z)} > 0 (|z| < |z0|), <e {q(z0)} = 0, and q(z0) 6= 0 (z ∈ U).

Then, by using Lemma 2, we have

q(z0) = ib and
z0q

′(z0)
q(z0)

= i
c

2

(
b +

1
b

)
(b 6= 0, c ≥ 1).(9)

Thus, we have from (8) and (9) that

<e

{
zQ′

a(z)
1 +Qa(z)

∣∣∣∣
z=z0

}
= <e

{
z0q

′(z0)
q(z0)

· q(z0)
a + q(z0)

}

= <e

{
i
c

2

(
b +

1
b

)
ib(a + ib)
|a + ib|2

}
= − c

2
1 + b2

|a + ib|2
<e {a} .(10)

Therefore, we easily get from (10):

<e

{
z0Q′

a(z0)
1 +Qa(z0)

} {
≤ 0 if <e {a} ≥ 0
≥ 0 if <e {a} ≤ 0

}
,

which it contradicts the condition (2). So, it follows that <e {q(z)} > 0 for all
z ∈ U , that is that

<e {1− a +Qa(z)} > 0.

Hence, the proof of Theorem is completed. �

Denote by T (p) and M(p), where p ∈ N = {0, 1, 2, 3, . . . }, the classes of
normalized functions f and g of the forms:

f(z) = zp + ap+1z
p+1 + ap+2z

p+2 + · · ·

and
g(z) = z−p + a−p+1z

−p+1 + a−p+2z
−p+2 + · · · ,

which are analytic and multivalent in the unit disc U and meromorphic multi-
valent in the punctured unit disc D = U \ {0}, respectively.

In order to obtain several useful results in the Analytic Function Theory
and Geometric Function Theory we apply our Theorem to the classes T (p) and
M(p). First we recall some well-known subclasses of T (p) and M(p), which
play an important role in the Geometric Function Theory (see, for details,
[1-3]):

T S(p, α) =
{

f ∈ T (p) : <e

{
zf ′(z)
f(z)

}
> α (z ∈ U)

}
,(11)
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T C(p, α) =
{

f ∈ T (p) : <e

{
1 +

zf ′′(z)
f ′(z)

}
> α (z ∈ U)

}
,(12)

T K(p, α) =
{

f ∈ T (p) : <e

{
f ′(z)
zp−1

}
> α (z ∈ U)

}
,(13)

MS(p, α) =
{

f ∈M(p) : <e

{
−zf ′(z)

f(z)

}
> α (z ∈ D)

}
(14)

and

MC(p, α) =
{

f ∈M(p) : <e

{
−1− zf ′(z)

f(z)

}
> α (z ∈ D)

}
,(15)

where p ∈ N and 0 ≤ α < p.

In the literature, the functions in (11) - (15) are called, respectively, mul-
tivalently starlike of order α in U , multivalently convex of order α in U , mul-
tivalently close-to-convex of order α in U , multivalently meromorphic starlike
of order α in D and multivalently meromorphic convex of order α in D. See,
for their details, [1-3]. Now we can give some interesting and (or) important
results conserning the above well-known results:

Corollary 1. Let f ∈ T (p) (p ∈ N), Q1(z) := z−pf(z) and also let the function
Q1 satisfy the assumptions of the Theorem. Then

<e {Q1(z)} = <e
{
z−pf(z)

}
> 0.

Corollary 2. Let f ∈ T (p) (p ∈ N), Qp(z) := z1−pf ′(z) and also let the
function Qp satisfy the assumptions of the Theorem. Then

<e {Qp(z)} = <e
{
z1−pf ′(z)

}
> p− 1,

i.e., f ∈ T K(p, p− 1).

Corollary 3. Let f ∈ T (p) (p ∈ N), Qp(z) := zf ′(z)
f(z) and also let the function

Qp satisfy the assumptions of the Theorem. Then

<e {Qp(z)} = <e

{
zf ′(z)
f(z)

}
> p− 1,

i.e., f ∈ T S(p, p− 1).

Corollary 4. Let f ∈ T (p) (p ∈ N), Qp(z) := 1 + zf ′′(z)
f ′(z) and also let the

function Qp satisfy the assumptions of the Theorem. Then

<e {Qp(z)} = <e

{
zf ′′(z)
f ′(z)

}
> p− 2,

i.e., f ∈ T C(p, p− 1).
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Corollary 5. Let f ∈M(p) (p ∈ N), Qp(z) := − zf ′(z)
f(z) and also let the function

Qp satisfy the assumptions of the Theorem. Then

<e {Qp(z)} = <e

{
−zf ′(z)

f(z)

}
> p− 1,

i.e., f ∈MS(p, p− 1).

Corollary 6. Let f ∈ M(p), (p ∈ N), Qp(z) := −1 − zf ′′(z)
f ′(z) and let also the

function Qp satisfy the assumptions of the Theorem. Then

<e {Qq(z)} = <e

{
−zf ′′(z)

f ′(z)

}
> q,

i.e., f ∈MC(p, p− 1).

Corollary 7. Let f ∈ T (p), g ∈ M(q) (p, q ∈ N) and Q1(z) := z−p−q f(z)
g(z) . If

the function Q1 satisfies the assumptions of the Theorem, then

<e {Q1(z)} = <e

{
z−p−q f(z)

g(z)

}
> 0.

Corollary 8. Let f ∈ T (p), g ∈M(q) (p, q ∈ N) and Q− q
p
(z) := zp+q g′(z)

f ′(z) . If
the function Q− q

p
satisfies the assumptions of the Theorem, then

<e
{
Q− q

p
(z)

}
= <e

{
zp+q g′(z)

f ′(z)

}
> −q

p
− 1.

When we take p = 1 in the definitions (11) – (15), then we obtain the other
interesting subclasses: T S(α) := T S(1, α), T C(α) := T C(1, α), T K(α) :=
T K(1, α), MS(α) := MS(1, α) and MC(α) := MC(1, α) which consist, re-
spectively, starlike functions of order α in U , convex functions of order α in U ,
close-to-convex functions of order α in U , meromorphically starlike functions
of order α in D and meromorphically convex functions of order α in D, where
0 ≤ α < 1. See, [1-3] and (for example) [8-10]. When we choose the functions
f and (or) g of such subclasses of T := T (1) and (or) M := M(1), we can
obtain a lot of results as in the Corollaries 1-8.
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NATO and Başkent University (Ankara,TURKEY).



44 HÜSEYIN IRMAK AND KRZYSZTOF PIEJKO

References

[1] P. L. Duren, Univalent Functions, Grundlehren der Mathematishen Wissenschaften 259,
Springer-Verlag, 1983.

[2] A. W. Goodman, Univalent Functions. Vols. I and II, Polygonal Publishing Company,

1983.
[3] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Functions Theory,

World Scientific Publ. Comp., 1992.
[4] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971),

469–474.
[5] M. Nunokawa, On the properties of non-caratheodory functions, Proc. Japan. Acad. Ser.

A Math. Sci. 68 (1992), 152–153.
[6] H. Irmak and S. Owa, Certain inequalities for multivalent starlike and meromorphically

multivalent starlike functions, Bull. Inst. Math. Acad. Sinica 31 (2003), no. 1, 11–21.
[7] H. Irmak, R. K. Raina and S. Owa, A criterion for multivalent starlike and meromor-

phically multivalent starlike functions, Inter. J. Appl. Math. 12 (2003), no. 2, 93–98.
[8] H. Irmak, R. K. Raina and S. Owa, Cetain results involving inequalities on analytic and

univalent functions, Far East J. Math. Sci. 10 (2003), no. 3, 359–366.
[9] H. Irmak and S. Owa, Cetain inequalities involving analytic and univalent functions,

Far East J. Math. Sci. 10 (2003), no. 3, 353–358.
[10] H. Irmak and R. K. Raina, The starlikeness and convexity of multivalent functions

involving certain inequalities, Rev. Mat. Complut. 16 (2003), no. 2, 391–398.
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