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ON STATE TRANSITION DIAGRAMS OF
CELLULAR AUTOMATA

Jae-Gyeom Kim

Abstract. We discuss group orders and lengths of cycles of state tran-

sition diagrams of cellular automata.

1. Introduction

Cellular automata have been demonstrated by many researchers to be a
good computational model for physical systems simulation since the concept of
cellular automata first introduced by John Von Neumann in the 1950’s. Many
parts of the theory of cellular automata have been developed by researchers
who are not mathematicians. And we could find some logical errors in the
literatures [1, 4]. In fact, the errors in [4] have been repeated in [1]. Recently,
some of such errors were pointed out and parts of them were modified [3].

In this note, we will modify some more parts of them and discuss lengths of
cycles of state transition diagrams of cellular automata. For the purpose, we
will use terminologies and notations just as in [4]. In section 2, we will give
some terminologies and notations in [4] and quote some contents from [4].

2. Preliminaries and quotation

A cellular automaton(CA) is an array of sites (cells) where each site is in
any one of the permissible states. At each discrete time step (clock cycle) the
evolution of a site value depends on some rule (the combinational logic) which is
a function of the present state of its k neighbors for a k-neighborhood CA. For
2-state 3-neighborhood CA, the evolution of the (i)th cell can be represented
as a function of the present states of (i − 1)th, (i)th, and (i + 1)th cells as:
xi(t + 1) = f{xi−1(t), xi(t), xi+1(t)}, where f represents the combinational
logic.

For 2-state 3-neighborhood CA there are 23 distinct neighborhood configu-
rations and 223

distinct mappings from all these neighborhood configurations to
the next state, each mapping representing a CA rule. The CA, characterized by
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a rule known as rule 60, specifies an evolution from neighborhood configuration
to the next state as:

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0 Decimal 60.

The corresponding combinational logic of rule 60 is

xi(t + 1) = xi−1(t)⊕ xi(t),

that is, the next state of (i)th cell depends on the present states of its left and
self neighbors.

A CA characterized by EXOR and/or EXNOR dependence is called an ad-
ditive CA. If in a CA the neighborhood dependence is EXOR, then it is called
a noncomplemented CA and the corresponding rule is referred to as a noncom-
plemented rule. For neighborhood dependence of EXNOR (where there is an
inversion of the modulo-2 logic), the CA is called a complemented CA. The cor-
responding rule involving the EXNOR function is called a complemented rule.
In a complemented CA, single or multiple cells may employ a complemented
rule with EXNOR function. There exist 16 additive rules which are: Rule 0,
15, 51, 60, 85, 90, 102, 105, 150, 153, 165, 170, 195, 204, 240 and 255.

If in a CA the same rule applies to all cells, then the CA is called a uniform
CA; otherwise the CA is called a hybrid CA. There can be various boundary
conditions; namely, null (where extreme cells are connected to logic ‘0’), peri-
odic (extreme cells are adjacent), etc. In the sequel, we will always assume null
boundary condition unless otherwise specified.

The logic functions for three complemented rules 195, 163 and 51 and the
corresponding noncomplemented rules are also noted in Table 1.

Table 1. Logic functions

complemented noncomplemented
Rule logic function dependency rule logic function

195 xi−1(t)⊕ xi(t) left & self 60 xi−1(t)⊕ xi(t)
153 xi(t)⊕ xi+1(t) self & right 102 xi(t)⊕ xi+1(t)
51 xi(t) self 204 xi(t)

The characteristic matrix T of a CA is the transition matrix of the CA. The
next state ft+1(x) of an additive CA is given by ft+1(x) = T × ft(x), where
ft(x) is the current state, t is the time step. If all the states of the CA form a
single or multiple cycles, then it is referred to as a group CA.

Lemma 2.1. [2] A CA is a group CA if and only if Tm = I where T is the
characteristic matrix of the CA, I is the identity matrix and m is a positive
integer.
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Lemma 2.2. [2] Let T
m

denote the application of the complemented rule T
for m successive cycles, then

[T
m

][f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)] + [Tm][f(x)]

where T is the characteristic matrix of the corresponding noncomplemented
rule and [F (x)] is an `-dimensional vector (` = number of cells) responsible for
inversion after EXORing. F (x) has ‘1’ entries (i.e., nonzero entries) for CA
cell positions where EXNOR function is employed.

Lemma 2.3. [2] The complement of a group CA is also a group CA.

Lemma 2.4. [5] CA rules 60, 102 and 204 form groups for all lengths ` with
group order O(G) = n = 2a where a = 0, 1, 2, · · · . And if the CA rule is 60
or 102 then

n

2
< ` ≤ n.

Lemma 2.4 provides the CA rules that generate cycles of length 2a, a =
0, 1, 2, · · · . The following lemma establishes the corresponding results for
uniform CA’s with complemented rules 51, 153, and 195. The corresponding
noncomplemented rules are 204, 102 and 60.

Lemma 2.5. [4] Complemented CA rules 195, 153 and 51 form groups for all
lengths with group order O(G) = m = 2a where a = 0, 1, 2, · · · .

Proof. [4]. Consider a CA with rule R and characteristic matrix T , where
R is a combination of the rules 60, 102, and 204. Then, as per Lemma 2.2,
the corresponding complemented CA, with characteristic matrix T , may be
expressed as:

[T
m

][f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)] + [Tm][f(x)]. (1)

The fact that R is a group CA rule implies that Tn = I for n as some integral
power of 2 (Lemma 2.4). As per Lemma 2.3, complement of a group CA is also
a group CA. So,

[T
m

][f(x)] = [f(x)], (2)
where m is the cycle length of the complemented CA. From (1) and (2),

[Tm + I][f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)]

⇒ [T + I][I + T + T 2 + · · ·+ Tm−1][f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)]

Assume I + T + T 2 + · · ·+ Tm−1 6= 0, consequently

[T + I][f(x)] = [F (x)]. (3)

If the CA under consideration consists of ` number of cells, then (3) is a system
of ` linear equations, and the condition for its solution to exist is

rank[T + I] = rank[T + I|F (x)].

In the case of R, being any combination of rules 60, 102 and 204, it can be
directly shown that rank[T +I] < `, owing to fact that one row of matrix T +I
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is null in such a case. Also, since each entry of F (x) is 1 (as in the case of all
complemented rules), it follows that

rank[T + I] 6= rank[T + I|F (x)].

This is a contradiction and, hence, it follows that

I + T + T 2 + · · ·+ Tm−1 = 0(4)

⇒ T
m

[f(x)] = Tm[f(x)] = f(x)(5)

⇒ Tm = I.

Let m = bn, where b is nonzero positive integer. For b = 2,

I + T + T 2 + · · ·+ Tm−1 (as m = 2n)

= I + T + T 2 + · · ·+ Tn−1 + Tn + Tn+1 + Tn+2 + · · ·+ T 2n−1

= [I + T + T 2 + · · ·+ Tn−1] + [I + T + T 2 + · · ·+ Tn−1] (as Tn = I)

= 0 (since modulo-2 summation is involved).

So, the relation (4) always satisfies for b = 2. For particular values of T , relation
(4) may hold for b = 1. Hence, the value of m is either n or 2n.

Now we need to show that m is a nonzero positive integral power of 2. As
per Lemma 2.4, n is of the form 2a, (a = 0, 1, 2, · · · ). We consider the following
two cases.

Case 1 : for n = 20 = 1

⇒ T = I

⇒ I + T = 0(6)

Considering equations (4) and (6) we arrive at the conclusion that m = 2
for n = 1.

Case 2 : for n = 2a, (a = 1 , 2 , 3 , · · · );
we know that m is either n or 2n.
So m is also a nonzero positive integral power of 2. �

Theorem 2.6. [4] If a null boundary uniform or hybrid CA configured with
rules 51, 153 and 195 is a group CA, then its state transition diagram consists
of equal cycles of even length.

Proof. From Lemma 2.5, it can be seen that group CA, under different config-
urations of rules 51, 153, and 195, generate cycles of even length m (positive
integral power of 2). Now we have to prove that factors of m can not be a cycle
lengths. Assume that the group CA has a cycle of length mi [where mi is a
factor of m]. Then it must satisfy the following equations:

I + T + T 2 + · · ·+ Tmi−1 = 0 and [T
mi ][f(x)] = [Tmi ][f(x)] = f(x).

This implies that mi is the group order of all cycle lengths of the group CA,
suggesting that mi is equal to m, i.e., all cycles are equal in length. Hence, the
theorem. �
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Lemma 2.5 and Theorem 2.6 were proved first in [4]. And the proofs of
Lemma 2.5 and Theorem 2.6 in [1] are quite similar with the proofs in [4].

3. State transition diagrams of CA

Logical errors in the proofs of Lemma 2.5 and Theorem 2.6 were pointed out
and a new proof of Lemma 2.5 was given in [3]. And the following proposition,
which is contained in the proof of Lemma 2.5, was reproved in the new proof
of Lemma 2.5 [3].

Proposition 3.1. If a uniform CA of length ` configured with rule 60, 102 or
204 has group order n, then the corresponding complemented uniform CA of
length ` configured with rule 195, 153 or 51 has group order n or 2n.

Now we will characterize the (2a)th power of the characteristic matrix T of
CA rule 60. By mathematical induction, we can easily get T 2a

where a = 1, 2,
· · · as follows;

(T 2a

)ij =


1 i = j,

1, i = j + 2a,

0, otherwise,
(7)

or

T 2a

=



1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1 0 0
...

...
... · · ·

. . .
...

0 0 0 · · · 0 1 0 0
1 0 0 · · · 0 0 1 0 0
0 1 0 · · · 0 0 0 1 0 0
0 0 1 · · · 0 0 0 0 1 0 0
0 0 0 · · · 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 · · · 0 1 0 0 · · · · · · · · · · · · 1



← (2a)th row (8)

So we have an easy lemma which is a part of Lemma 2.4.

Lemma 3.2. Let T be the characteristic matrix with size `× ` of CA rule 60.
Then the order of T is 2a where 2a−1 < ` ≤ 2a.

Note that (A + B)2
a

= A2a

+ B2a

in modulo-2 logic where A and B are
matrices. Now we consider the matrix I + T where T is the characteristic
matrix of CA rule 60. The entries of I + T are as follows;

(I + T )ij =

{
1 i = j + 1,

0, otherwise.
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So, in matrix multiplication (I +T )A = B, I +T pull down every row one step
and make the first row zero, or

Bij =

{
0 i = 1,

A(i−1)j , otherwise.

Thus we have

((I + T )t)ij =

{
1 i = j + t,

0, otherwise
(9)

where t = 1, 2, · · · , in particular,

(I + T )` = 0 and (I + T )`−1 =


0
... 0
0
1 0 · · · 0

 (10)

where `× ` is the size of T .

Lemma 3.3. Let T be the characteristic matrix of CA rule 60. Then (I +
T )2

a−1 = I + T + · · ·+ T 2a−1 where a = 1, 2, · · · .

Proof. We will use mathematical induction on a. If a = 1, then it is obvious.
Let a > 1. Then we have

I + T + · · ·+ T 2a−1

= I + T + · · ·+ T 2a−1−1 + T 2a−1
+ T 2a−1+1 + · · ·+ T 2a−1

= (I + T + · · ·+ T 2a−1−1) + T 2a−1
(I + T + · · ·+ T 2a−1−1)

= (I + T 2a−1
)(I + T + · · ·+ T 2a−1−1)

= (I + T 2a−1
)(I + T )2

a−1−1 by induction hypothesis

= (I + T )2
a−1

(I + T )2
a−1−1

= (I + T )2
a−1.

So we have the conclusion. �

Theorem 3.4. A null boundary uniform CA of length ` configured with rule
195 has group order 2a where 2a−1 ≤ ` < 2a. And its state transition diagram
consists of equal cycles of length 2a.
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Proof. Let T be the characteristic matrix of CA rule 60. At first, suppose that
` = 2a−1. Then we have

[T
`
][f(x)]

= [I + T + · · ·+ T `−1][F ] + [T `][f(x)] by Lemma 2.2

= [(I + T )`−1][F ] + [T `][f(x)] by Lemma 3.3

=


0
... 0
0
1 0 · · · 0




1

...

1

 + [I][f(x)] by (10) and Lemma 3.2

=


0
...
0
1

 + [f(x)]

6= [f(x)]

for all f(x). And [T
2a

][f(x)] = [f(x)] for all f(x) by Proposition 3.1 and
Lemma 3.2. Now let 2a−1 < ` < 2a. Then we have

[T
2a−1

][f(x)]

= [(I + T )2
a−1−1][F ] + [T 2a−1

][f(x)] by Lemma 2.2 and Lemma 3.3

= (2a−1)th row→



0 0
...

... 0
1 0
0 1 0
...

...
. . .




1

...

1



+

(2a−1 + 1)th row→



1 0
0 1 0

0 0 1 0 0
...

...
...

0
. . .

1 0

0 1 0 0
...

...
. . . 1





f(x)1

...

f(x)`


by (7), (8) and (9)



524 JAE-GYEOM KIM

= (2a−1)th row→



0
...
0
1
...

1


+



f(x)1

...
f(x)2a−1

f(x)2a−1+1 + f(x)1
...

f(x)` + f(x)`−2a−1



=


...

1 + f(x)2a−1

...


6= [f(x)]

for all f(x). Hence we have the conclusion. �

Since the characteristic matrices of CA rules 60 and 102 are the transposes
of each other, the discussion on some properties related to CA rule 60 and the
complemented CA rule 195 in this section is parallel to that on the properties
related to CA rule 102 and the complemented CA rule 153. So all of the results
on CA rule 60 and the complemented CA rule 195 that was discussed in this
section is still valid for CA rule 102 and the complemented CA rule 153. In
particular, we can have the following theorem which is parallel to Theorem 3.4.

Theorem 3.5. A null boundary uniform CA of length ` configured with rule
153 has group order 2a where 2a−1 ≤ ` < 2a. And its state transition diagram
consists of equal cycles of length 2a.

Note that a null boundary uniform CA configured with rule 51 has group
order 2 obviously. And its state transition diagram consists of equal cycles of
length 2 clearly.
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