
East Asian Mathematical Journal

Vol. 25 (2009), No. 4, pp. 505–516

MIXED VECTOR EQUILIBRIUM-LIKE PROBLEMS IN
BANACH SPACES

Byung-Soo Lee, Salahuddin and M. K. Ahmad

Abstract. In this paper, we consider a new class of generalized mixed

vector equilibrium-like problems in Banach spaces. By using Fan-KKM

Theorem and Nadler’s Theorem, we prove the existence theorem of solu-
tion for this class of generalized mixed vector equilibrium-like problems.

1. Introduction and preliminaries

(Vector) equilibrium problem is a unified model of several problems, includ-
ing optimization problems, fixed point problems, variational inequality prob-
lems, Nash equilibria problems, saddle point problems, complementarity prob-
lems as special cases and provides a natural unified framework for studying
many problems in finance, economics, network analysis, transportation and
elasticity [1-3, 5, 8, 9, 14]. We consider a new class of generalized mixed vec-
tor equilibrium-like problem and by using Fan-KKM Theorem [4] and Nadler’s
Theorem [12] we prove some existence theorems of solutions for the class of
generalized mixed vector equilibrium-like problems. Furthermore these exis-
tence theorems can be applied to derive some existence results of solutions for
generalized mixed vector variational-like problem. It is worth pointing out that
there are no assumptions of pseudo monotonicity in our existence results.

Definition 1.1. Let D be a nonempty subset of a vector space X. Then a mul-
tifunction T : D → 2X is called a KKM map, where 2X denotes the collection of
all nonempty subsets of X if for each nonempty finite subset {u1, u2, · · · , un} of

D, co{u1, u2, · · · , un} ⊂
n⋃
i=1

Tui, where co{u1, u2, · · · , un} denotes the convex

hull of {u1, u2, · · · , un}.

Fan-KKM Theorem. [4] Let D be an arbitrary set in a Hausdorff topological
vector space X. Let T : D → 2X be a KKM map such that Tu is closed for all
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u ∈ D and is compact for at least one u ∈ D. Then⋂
u∈D

Tu 6= ∅.

Nadler’s Theorem. [12] Let (X, ‖.‖) be a normed vector space and H the
Hausdorff metric on the collection CB(X) of all closed and bounded subsets of
X, induced by a metric d in terms of d(x, y) = ‖x− y‖, defined by,

H(A,B) = max(sup
u∈A

inf
v∈B
‖u− v‖, sup

v∈B
inf
u∈A
‖u− v‖),

for A and B in CB(X). If A and B are any two members in CB(X), then for
each ε > 0 and each u ∈ A, there exists v ∈ B such that

‖u− v‖ ≤ (1 + ε)H(A,B).

Lemma 1.1. [11] Let Y be a topological vector space with a pointed closed and
convex cone C such that intC 6= ∅, then for all x, y, z ∈ Y we have

(i) x− y ∈ −intC and x 6∈ −intC ⇒ y 6∈ −intC;
(ii) x+ y ∈ −C and x+ z 6∈ −intC ⇒ z − y 6∈ −intC;
(iii) x+ z − y 6∈ −intC and −y ∈ −C ⇒ x+ z 6∈ −intC;
(iv) x+ y 6∈ −intC and y − z ∈ −C ⇒ x+ z 6∈ −intC.

Definition 1.2. [11] Let f : D ×D → Y be a vector valued bifunction, then
f(x, y) is said to be hemicontinuous with respect to y, if for any given x ∈ D

lim
λ→0+

f(x, λy1 + (1− λ)y2) = f(x, y2) for all y1, y2 ∈ D.

Definition 1.3. [15] Let X,Y be two real Banach spaces and L(X,Y ) be
the space of all linear and continuous operators of X into Y . A bifunction
N(·, ·) : L(X,Y ) → L(X,Y ) is called continuous in the first argument if for
any u, v ∈ L(X,Y ),

‖N(u, ·)−N(v, ·)‖ → 0 as ‖u− v‖ → 0.

In a similar way we can define the continuity of N in the second argument.

Definition 1.4. [15] A single valued mapping h : D → Y is said to be P -convex
if

h(tu1 + (1− t)u2) ∈ th(u1) + (1− t)h(u2)− P, for u1, u2 ∈ D and t ∈ [0, 1].

Remark 1.1. It is easy to prove that h(u, v) is P -convex with respect to u if

and only if for any v ∈ D, h(
n∑
i=1

tiui, v) ∈
n∑
i=1

tih(ui, v)− P , for all ui ∈ D and

ti ∈ [0, 1], (i = 1, 2, · · · , n) with
n∑
i=1

ti = 1.
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Throughout the rest of this paper, by “→ ” and “⇀ ” we denote the strong
convergence and weak convergence respectively.

2. Main result

Throughout this paper, X and Y are real Banach spaces andD is a nonempty
convex subset of X. A map C : D → 2Y has convex cone-values C(u)
whose interior intC(u) is nonempty for each u ∈ D. With the maps A,
T : D → 2L(X,Y ), N : L(X,Y )×L(X,Y )→ L(X,Y ), f : L(X,Y )×D×D → Y
and h : D × D → Y , we consider the following mixed vector equilibrium-like
problems (MVELP):

(MVELP 1) Find u0 ∈ D such that

f(N(p, q), u0, v) + h(u0, v)− h(u0, u0) 6∈ −intC(u0)

for all v ∈ D, p ∈ A(v) and q ∈ T (v).

(MVELP 2) Find u0 ∈ D such that for some s0 ∈ A(u0) and t0 ∈ T (u0)

f(N(s0, t0), u0, v) + h(u0, v)− h(u0, u0) 6∈ −intC(u0)

for all v ∈ D.

Considering (MVELP 1) and (MVELP 2) in the following Theorem 2.1 and
Theorem 2.2, we assume the following condition (A) primarily;

(A) (A-1) C(u) is a pointed closed and convex cone with C(u) 6= Y for all u ∈ D,
(A-2) A and T have nonempty compact set-values,
(A-3) A map W : D → 2Y defined by W (u) = Y \ (−intC(u)) for u ∈ D,

has a weakly closed graph Gr(W ) in X × Y .
(A-4) h is weakly continuous in the first and second arguments.
(A-5) for each (z, v) ∈ L(X,Y )×D, f(z, ·, v) and h(v, ·) are weakly contin-

uous from D to Y .

Theorem 2.1. If we add the following condition (B) to (A);
(B) there exists a map g : D ×D → Y such that

(B-1) ∀u, v ∈ D, g(u, v) 6∈ −intC(u) implies f(N(p, q), u, v) + h(u, v)−
h(u, u) 6∈ −intC(u) for p ∈ A(u), q ∈ T (u),

(B-2) for each finite subset E of D, and for each u ∈ coE, a map ` :
D → Y defined by `(v) = g(u, v) is P -convex,

(B-3) for each v ∈ D, g(v, v) 6∈ −intC(v),
(B-4) there exists a weakly compact convex subset K of D and v0 ∈ K

such that

g(u, v0) ∈ −intC(u) for u ∈ D \K.

Then
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(I) (MVELP 1) is solvable.

Moreover, we add the following condition (C) to (A) and (B);
(C) (C-1) N is continuous in the first and second arguments,

(C-2) for each u, v ∈ D, f(N(pλ, qλ), vλ, vλ) ∈ C(u) for all pλ ∈ A(uλ),
qλ ∈ T (uλ) and f(N(pλ, qλ), u, vλ)+f(N(pλ, qλ), vλ, u) = 0, where
vλ = u+ λ(v − u), λ ∈ (0, 1),

(C-3) for each (z, u) ∈ L(X,Y )×D, a map f(z, u, ·) + h(u, ·) : D → Y
is P -convex, where P =

⋂
u∈D

C(u),

(C-4) for any u, v ∈ D,

H(A(u+ λ(v − u)), A(u))→ 0

and
H(T (u+ λ(v − u)), T (u))→ 0

as λ → 0+ for the Hausdorff metric H in CB(L(X,Y )), the col-
lection of all closed and bounded subsets of L(X,Y ),

(C-5) for each net {λ} ⊂ (0, 1) converging to 0+,

pλ → s0, pλ ∈ A(vλ)

qλ → t0, qλ ∈ T (vλ)

implies

f(N(pλ, qλ), vλ, v)− f(N(s0, t0), u, v)→ 0,

where vλ = u+ λ(v − u) for u, v ∈ D ×D,
(C-6) there exists a weakly compact convex subset K ⊆ D such that for

each u ∈ D\K there exists v0 ∈ D satisfying

f(N(p, q), u, v) + h(u, v)− h(u, u) ∈ −intC(u)

for all p ∈ A(v), q ∈ T (v).

Then there exists a solution u0 ∈ D such that

f(N(p, q), v, u0) + h(v, u0)− h(v, v) 6∈ −intC(u0)

for all v ∈ D and p ∈ A(v), q ∈ T (v).

Moreover additionally, the following conditions are stisfied:
(C-7) L(X,Y ) is reflexive,
(C-8) A and T have bounded closed convex set-values,
(C-9) for each net {λ} ⊂ (0, 1) such that λ→ 0+

pλ → s0, for all pλ ∈ A(vλ)
qλ → t0, for all qλ ∈ T (vλ)

}
⇒ f(N(pλ, qλ), vλ, v)− f(N(s0, t0), vλ, v) ⇀ 0

where vλ = u+ λ(v − u) for (u, v) ∈ D ×D.
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(II) Then (MVELP 2) is solvable.

Proof. (I) Define a map G : D → 2K by for v ∈ D,

G(v) = {u ∈ K : f(N(p, q), u, v) + h(u, v)− h(u, u) 6∈ −intC(u)

for p ∈ A(v), q ∈ T (v)},

then
(i) G(v) is weakly closed.

Indeed, for any sequence {un} in G(v) converging to u0 ∈ K,

f(N(p, q), un, v) + h(un, v)− h(un, un) 6∈ −intC(un)

for p ∈ A(v) and q ∈ T (v). Then by conditions (A-4) and (A-5),

f(N(p, q), un, v)+h(un, v)−h(un, un) ⇀ f(N(p, q), u0, v)+h(u0, v)−h(u0, u0).

Hence by condition (A-3),

f(N(p, q), u0, v) + h(u0, v)− h(u0, u0) 6∈ −intC(u0),

which shows that G(v) is weakly closed.

(ii)
⋂
v∈D

G(v) is nonempty.

Indeed, since K is weakly compact, it is sufficient to show that the fam-
ily {G(v)}v∈D has the fip(finite intersection property). Let M = {vj : j =
1, 2, · · · ,m} be any finite subset of D.

Since V := coM is a compact convex subset of D, it is a weakly compact
convex subset of D. Define a map F : V → 2V by, for v ∈ V

F (v) = {u ∈ V : g(u, v) 6∈ −intC(u)},

then by condition (B-3), F (v) is nonempty. And F is a KKM map. If F is not
a KKM map, then there exists a finite subset {yi : i = 1, 2, · · · , n} of V and

scalars αi ≥ 0 with
n∑
i=1

αi = 1 such that

n∑
i=1

αiyi 6∈
n⋃
i=1

F (yi).

Thus

g

(
n∑
i=1

αiyi, yi

)
∈ −intC

(
n∑
i=1

αiyi

)
.
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By condition (B-2),

g

(
n∑
i=1

αiyi,

n∑
i=1

αiyi

)
∈

n∑
i=1

αi g

(
n∑
i=1

αiyi, yj

)
− P

⊂
n∑
i=1

αi

(
−intC

(
n∑
i=1

αiyi

))
− C

(
n∑
i=1

αiyi

)

⊂ − intC

(
n∑
i=1

αiyi

)
− C

(
n∑
i=1

αiyi

)

= − intC

(
n∑
i=1

αiyi

)
,

which contradicts condition (B-3).
Since F (v) ⊂ G(v) for all v ∈ V by condition (B-1), G(v) is also nonempty

for all v ∈ V .
Since the closure clV (F (v)) is closed in V for all v ∈ V , it is also compact.
Hence by F-KKM Theorem,

⋂
v∈V

clV (F (v)) is nonempty. Choose u ∈
⋂
v∈V

clV (F (v)),

since v0 ∈ K and F (v0) ⊂ K by condition (B-4),

u ∈ clV (F (v0)) ≤ clD(F (v0))

= clK(F (v0)) ⊆ K.
Moreover it is easy to see that for each v ∈ V ,

Mv := {u ∈ V : f(N(p, q), u, v) + h(u, v)− h(u, u) 6∈ −intC(u)

for p ∈ A(v), q ∈ T (v)},
is weakly closed.

Since u ∈
m⋂
j=1

clV (F (vj)) and

clV (F (vj)) = clV ({u ∈ V : g(u, vj) 6∈ −intC(u)})
⊆ clV (Mvj

)
= Mvj for j = 1, 2, · · · ,m,

f(N(p, q), u, vj) + h(u, vj)− h(u, u) 6∈ −intC(u)

for p ∈ A(vj), q ∈ T (vj) for j = 1, 2, · · · ,m. Hence u ∈
m⋂
j=1

G(vj). Thus

{G(v) : v ∈ D} has the fip, which implies that
⋂
v∈D

G(v) is nonempty. Hence

(MVELP 1) is solvable.
That is, there exists u0 ∈ K ⊆ D such that

f(N(p, q), u0, v) + h(u0, v)− h(u0, u0) 6∈ −intC(u0)

for all v ∈ D, p ∈ A(v), q ∈ T (v).
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(II) For v ∈ D, letting vλ = λv + (1 − λ)u0, 0 < λ < 1, we have vλ ∈ D.
Since u0 ∈ G(vλ),

f(N(pλ, qλ), u0, vλ) + h(u0, vλ)− h(u0, u0) 6∈ −intC(u0) (2.1)

for pλ ∈ A(vλ), qλ ∈ T (vλ).
Since a map v 7→ f(z, u, v) + h(u, v) is P -convex for (z, u) ∈ L(X,Y ) ×D,

by conditions (C-1) and (C-3) we have

f(N(pλ, qλ), vλ, vλ) + h(vλ, vλ)− h(u0, u0)

= f(N(pλ, qλ), vλ, λv + (1− λ)u0) + h(vλ, λv + (1− λ)u0)− h(u0, u0)

∈ λ[f(N(pλ, qλ), vλ, v) + h(vλ, v)− h(u0, u0)]

+ (1− λ)[f(N(pλ, qλ), vλ, u0) + h(vλ, u0)− h(u0, u0)]− P
⊆ λ[f(N(pλ, qλ), vλ, v) + h(vλ, v)− h(u0, u0)]

+ (1− λ)[f(N(pλ, qλ), vλ, u0) + h(vλ, u0)− h(u0, u0)]− C(u0)

⊆ λ[f(N(pλ, qλ), vλ, v) + h(vλ, v)− h(u0, u0)]

− (1− λ)[f(N(pλ, qλ), u0, vλ) + h(u0, vλ)− h(u0, u0)]− C(u0).

(2.2)

Hence
f(N(pλ, qλ), vλ, v) + h(vλ, v)− h(u0, u0) 6∈ −intC(u0).

Indeed, suppose to the contrary that

f(N(pλ, qλ), vλ, v) + h(vλ, v)− h(u0, u0) ∈ −intC(u0).

Since −intC(u0) is a convex cone

λ[f(N(pλ, qλ), vλ, v) + h(vλ, v)− h(u0, u0)] ∈ −intC(u0).

Since condition (C-2) implies that

f(N(pλ, qλ), vλ, vλ) ∈ C(u0),

so from (2.2) we derive

(1− λ)[f(N(pλ, qλ), u0, vλ) + h(u0, vλ)− h(u0, u0)]

∈ λ[f(N(pλ, qλ), vλ, v) + h(vλ, v)− h(u0, u0)]− f(N(pλ, qλ), vλ, vλ)− C(u0)

⊆ − intC(u0)− C(u0)− C(u0)

⊆ − intC(u0)− C(u0)

= − intC(u0).

Thus
f(N(pλ, qλ), u0, vλ) + h(u0, vλ)− h(u0, u0) ∈ −intC(u0),

which contradicts (2.1).
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On the other hand, since A(vλ) and A(u0) (respectively, T (vλ) and T (u0))
are bounded closed subsets of L(X,Y ), by Nadler’s Theorem for pλ ∈ A(vλ)
(resp., qλ ∈ T (vλ)), there exists an sλ ∈ A(u0) (resp., tλ ∈ T (u0)) such that

‖pλ − sλ‖ ≤ (1 + λ)H(A(vλ), A(u0))

(resp., ‖qλ − tλ‖ ≤ (1 + λ)H(T (vλ), T (u0))).

Since L(X,Y ) is reflexive and A(u0) (resp., T (u0)) is a bounded closed and
convex subsets in L(X,Y ), A(u0) (resp., T (u0)) is also weakly compact in
L(X,Y ). Hence we may assume sλ ⇀ s0 ∈ A(u0) (resp., tλ ⇀ t0 ∈ T (u0)) as
λ→ 0+. Moreover for each ϕ ∈ (L(X,Y ))∗, the dual space of L(X,Y ),

‖ϕ(N(pλ, qλ)−N(s0, t0))‖
≤ |ϕ(N(pλ, qλ)−N(sλ, qλ))|+ |ϕ(N(sλ, qλ)−N(s0, qλ))|

+ |ϕ(N(s0, qλ)−N(s0, tλ)|+ |ϕ(N(s0, tλ)−N(s0, t0)|
≤ ‖ϕ‖ ‖pλ − sλ‖+ ‖ϕ‖ ‖sλ − s0‖+ ‖ϕ‖ ‖qλ − tλ‖+ ‖ϕ‖ ‖tλ − t0‖
≤ ‖ϕ‖(1 + λ)H(A(vλ), A(u0)) + ‖ϕ‖ ‖sλ − s0‖

+ ‖ϕ‖(1 + λ)H(T (vλ), T (u0)) + ‖ϕ‖ ‖tλ − t0‖.

Hence by condition (C-4),

pλ ⇀ s0 and qλ ⇀ t0 as λ→ 0+.

Thus according to condition (C-5),

‖f(N(pλ, qλ), vλ, v)− f(N(s0, t0), u0, v)‖ → 0 as λ→ 0+.

Since h : D × D → Y is continuous with respect to the first and second
arguments, by condition (C-5),

f(N(pλ, qλ), vλ, v) + h(vλ, v)− h(vλ, vλ)− f(N(s0, t0), u0, v) + h(u0, v)− h(u0, u0)

⇀ 0 as λ→ 0+.

Since W (u0) = Y \ (−intC(u0)) is weakly closed, (MVELP 2) is solvable. �

Theorem 2.2. If we change (A-1) with (A′-1) and (B) with (B′), then (MVELP
1) is solvable. Moreover we add (C) to them, then (MVELP 2) is also sovable.

(A′-1) Assume that C(u) is a closed proper convex solid cone of Y with
C(u) 6= Y for all u ∈ D.

(B′) there exists a bifunction g : D ×D → Y such that
(B′-1) g(u, v) 6∈ −intC(u) for u, v ∈ D,
(B′-2) g(u, v) − f(N(p, q), u, v) ∈ −C(u) for u, v ∈ D, p ∈ A(v), q ∈

T (v),
(B′-3) {v ∈ D : g(u, v) + h(v, u)− h(u, u) ∈ intC(u)} is convex for each

u ∈ D;
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(B′-4) there exists a weakly compact convex subset K ⊆ D such that for
each u ∈ D\K there exists v0 ∈ D satisfying

f(N(p, q), u, v0) + h(u, v0)− h(u, u) ∈ −intC(u) for p ∈ A(u), q ∈ T (u).

Proof. Define a map G : D → 2K by for v ∈ D,

G(v) = {u ∈ K : f(N(p, q), u, v) + h(u, v)− h(u, u) 6∈ −intC(u)

for all p ∈ A(v), q ∈ T (v)}.

Following the proof of Theorem 2.1, we can prove that G(v) is weakly closed
for each v ∈ D. We now claim that

⋂
v∈D

G(v) 6= ∅. Indeed, since K is weakly

compact, it is sufficient to show that the family {G(v)}v∈D has the fip. Let
{v1, v2, · · · , vn} be a finite subset of D and set B = co{K ∪ {v1, v2, · · · , vn}}.
Then B is a weakly compact and convex subset of D.

We define maps F1, F2 : B → 2B as follows:

F1(v) = {u ∈ B : f(N(p, q), u, v) + h(u, v)− h(u, u) 6∈ −intC(u),

for all p ∈ A(v), q ∈ T (v)}, for all v ∈ B,
and

F2(v) = {u ∈ B : g(u, v) + h(v, u)− h(u, u) 6∈ −intC(u)} for all v ∈ B.

By conditions (B′-1) and (B′-2), we have

g(v, v) + h(v, v)− h(v, v) 6∈ −intC(v), for all v ∈ B and

g(v, v)− f(N(p, q), v, v) ∈ −C(v) for all p ∈ A(v), q ∈ T (v).

Now Lemma 1.1 (ii) guarantees that

f(N(p, q), v, v) + h(v, v)− h(v, v) 6∈ −intC(v) for all p ∈ A(v), q ∈ T (v)

and so F1(v) is nonempty. Now since F1(v) is a weakly closed subset of the
weakly compact subset B, we know that F1(v) is weakly compact.

Next, we claim that F2 is a KKM-map. Indeed suppose that there exists a

finite subset {u1, u2, · · · , um} of B and αi ≥ 0, i = 1, 2, · · · ,m with
m∑
i=1

αi = 1

such that

û =
m∑
i=1

αiui ∈
m⋃
j=1

F2(uj).

Then

g(û, uj) + h(û, uj)− h(û, û) ∈ −intC(û), j = 1, 2, · · · ,m.

From condition (B′-3), we derive

g(û, û) = g(û, û) + h(û, û)− h(û, û) ∈ −intC(û),
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which contradicts condition (B′-1). Thus F2 is a KKM-map. From condition
(B′-2) and Lemma 1.1(ii), we have

F2(v) ⊆ F1(v) for all v ∈ B.

Indeed if u ∈ F2(v), then

g(u, v) + h(u, v)− h(u, u) 6∈ −intC(u).

By condition (B′-2) we have

g(u, v)− f(N(p, q), u, v) ∈ −C(u), for all p ∈ A(v), q ∈ T (v).

Consequently it follows from Lemma 1.1 (ii) that

f(N(p, q), u, v) + h(u, v)− h(u, u) 6∈ −intC(u) for all p ∈ A(v), q ∈ T (v)

that is u ∈ F1(v). This shows that F1 is also a KKM map.

According to Fan-KKM Theorem, there exists ū ∈ B such that ū ∈ F1(v)
for all v ∈ B, that is, there exists ū ∈ B such that

f(N(p, q), ū, v) + h(ū, v)− h(ū, ū) 6∈ −intC(ū),

for all v ∈ B, p ∈ A(v), q ∈ T (v).

By condition (C-6), we get ū ∈ K and ū ∈ G(vi), i = 1, 2, · · · , n. Hence
{G(v)}v∈D has the fip and moreover⋂

v∈D
G(v) 6= ∅,

that is, there exists u0 ∈ K ⊆ D such that

f(N(p, q), u0, v) + h(u0, v)− h(u0, u0) 6∈ −intC(u0),

for all v ∈ D, p ∈ A(v) and q ∈ T (v).

�

For the remainder of the proof, we can derive the conclusion of Theorem 2.2
by following the same proof as in Theorem 2.1.

Remark 2.1. (1) If we take N(p, q) = N(p0) and h(u, u) = h(u), then we
have the following problem: Find u0 ∈ D, there exists p0 ∈ A(u0) such
that,

f(N(p0), u0, v) + h(v)− h(u0) 6∈ −intC(u0) for all v ∈ D,

which is considered by Ceng et al. [3].
(2) In particular, if we put f(z, x, y) = 〈z, η(y, x)〉 for all (z, x, y) ∈ L(X,Y )×

D × D, where η : D × D → X then the above problem reduces to
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the generalized mixed vector variational type inequality problem. Find
u0 ∈ D, there exist p0 ∈ A(u0), q0 ∈ T (u0) such that

〈N(p0, q0), η(v, u0)〉+ h(u0, v)− h(u0, u0) 6∈ −intC(u0)
for all v ∈ D,

which is the variant for of Zhao and Zia [15] and Ahmad and Salahuddin
[1].

(3) If we take A as single-valued mapping, then we have the following
generalized vector variational type inequality problem: Find u0 ∈ D,
there exists q0 ∈ T (u0) such that

〈N(u0, q0), η(v, u0)〉+ h(u0, v)− h(u0, u0) 6∈ −intC(u0)
for all v ∈ D,

considered by Lee et al. [10].
(4) Again if we take N(u0, q0) ∼= N(q0) and h(u, u) ∼= h(u), then we have

the following problem of finding u0 ∈ D such that

〈N(q0), η(v, u0)〉+ h(v)− h(u) 6∈ −intC(u0) for all v ∈ D,

which is the generalized vector variational like inequality problem con-
sidered by Khan and Salahuddin [7].

(5) If h ∼= 0, N is an identity mapping, then we have the finding u0 ∈ D
such that q0 ∈ T (u0) and

〈q0, η(v, u0)〉 6∈ −intC(u0) for all v ∈ D,

which is the vector variational like inequality.
(6) If T is a single-valued mapping, then we have the finding u0 ∈ D such

that

〈T (u0), η(v, u0)〉 6∈ −intC(u0) for all v ∈ D,

which is called a generalized vector variational like inequality considered
and studied by Siddiqi et al. [13].

(7) If η(v, u0) = v − u0, then we have the finding u0 ∈ D such that

〈T (u0), v − u0〉 6∈ −intC(u0) for all v ∈ D,

which is called vector variational inequality considered and studied by
Lee et al. [10].

(8) If Y = R, L(X,Y ) = X∗ (the dual of X), C(u) = R+ for u ∈ D then
we have the finding u0 ∈ D such that

〈T (u0), v − u0〉 ≥ 0 for all v ∈ D,

which is called classical variational inequality, considered by Hartman
and Stampacchia [6].
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