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ON REGULAR NEAR-RINGS WITH (m,n)-POTENT
CONDITIONS

Yong Uk Cho

Abstract. Jat and Choudhari defined a near-ring R with left bipotent

or right bipotent condition in 1979. Also, we can define a near-ring R

as subcommutative if aR = Ra for all a in R. From these above two
concepts it is natural to investigate the near-ring R with the properties

aR = Ra2 (resp. a2R = Ra) for each a in R. We will say that such is a
near-ring with (1, 2)-potent condition (resp. a near-ring with (2, 1)-potent

condition). Thus, we can extend a general concept of a near-ring R with

(m,n)-potent condition, that is, amR = Ran for each a in R, where m,n
are positive integers.

We will derive properties of near-ring with (1, n) and (n, 1)-potent con-

ditions where n is a positive integer, any homomorphic image of (m,n)-
potent near-ring is also (m,n)-potent, and we will obtain some charac-

terization of regular near-rings with (m,n)-potent conditions.

1. Introduction

The concept of Von Neumann regularity of near-rings have been studied by
many authors Beidleman, Choudhari, Goyal, Heatherly, Ligh, Mason, Murty,
and Szeto. Their main results are suggested in the book of Pilz [13].

In 1980, Mason introduced the notions of left regularity, right regularity and
strong regularity of near-rings.

He proved that for zero-symmetric near-ring with identity, the concepts of
left regularity, strong left regularity and strong right regularity of near-rings are
all equivalent. Moreover, in 1984, the concept of strong regularity was studied
by Murty.

The Von Neumann regularity of rings and its generalization were studied
by Fisher, Snider, Hirano, Tominaga, Savaga, Li, Schein and Ohori. In 1985,
Ohori investigated the characterization of π-regularity and strong π-regularity
of rings.
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The concepts of Von Neumann regularity and π-regularity are the same
meaning as in ring theory, but the concept of strong regularity in near-rings is
different meaning in rings [8], [11].

A near-ring R is an algebraic system (R, +, ·) with two binary operations +
and · such that (R, +) is a group (not necessarily abelian) with a zero element
0, (R, ·) is a semigroup and (a + b)c = ac + bc for all a, b, c in R. If R has a
unity 1, then R is called unitary.

A near-field is a unitary near-ring with every nonzero element is invertible.
A near-ring R with the extra axiom a0 = 0 for all a ∈ R is said to be zero

symmetric. An element d in R is called distributive if d(a + b) = da + db for
all a and b in R.

We will use the following notations: Given a near-ring R, R0 = {a ∈ R |
a0 = 0} which is called the zero symmetric part of R, Rc = {a ∈ R | a0 = a}
which is called the constant part of R. The set of all distributive elements in
R is denoted by Rd.

Obviously, we see that R0 and Rc are subnear-rings of R, but Rd is a semi-
group under multiplication. Clearly, near-ring R is zero symmetric, in case
R = R0 also, in case R = Rc, R is called a constant near-ring.

In 1979, Jat and Choudhari defined a near-ring R to be left bipotent (resp.
right bipotent) if Ra = Ra2 (resp. aR = a2R) for each a in R. Also, we can
define a near-ring R as subcommutative if aR = Ra for all a in R like as in
ring theory. Obviously, every commutative near-ring is subcommutative. From
these above two concepts it is natural to investigate the near-ring R with the
properties aR = Ra2 (resp. a2R = Ra) for each a in R. We will say that such
is a near-ring with (1, 2)-potent condition (resp. a near-ring with (2, 1)-potent
condition). Thus, from this motivation, we can extend a general concept of a
near-ring R with (m,n)-potent condition, that is, amR = Ran for each a in R,
where m,n are positive integers.

First, we will derive properties of near-ring with (1, 2) and (2, 1)-potent
conditions, also (1, n) and (n, 1)-potent conditions where n is a positive integer.
Any homomorphic image of (m,n)-potent near-ring is also (m,n)-potent, and
every (1, n)-potent or (n, 1)-potent near-ring has the strong IFP.

Next, we will obtain every idempotent of (m,n)-potent near-ring is central,
and find some characterization of regular near-rings with (m,n)-potent condi-
tions.

For the remainder of basic concepts and results on near-rings, we will refer
to [10] and [13].

2. Results on (m,n)-potent near-rings

Let R and S be two near-rings. Then a mapping f from R to S is called a
near-ring homomorphism if (i) f(a + b) = f(a) + f(b), (ii) f(ab) = f(a)f(b).
We can replace homomorphism by monomorphism, epimorphism, isomorphism,
endomorphism and automorphism as in ring theory [1].
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A (two sided) ideal of a near-ring R is a subset I of R such that (i) (I, +)
is a normal subgroup of (R, +), (ii) a(I + b) − ab ⊂ I for all a, b ∈ R, (iii)
(I + a)b − ab ⊂ I for all a, b ∈ R, equivalently, IR ⊂ I. If I satisfies (i) and
(ii) then it is called a left ideal of R. If I satisfies (i) and (iii) then it is called
a right ideal of R.

We say that a near-ring R has the insertion of factors property (briefly, IFP)
provided that for all a, b, x in R with ab = 0 implies axb = 0, and R has the
strong IFP if every homomorphic image of R has the IFP, equivalently, for
any ideal I of R, for all a, b, x in R with ab ∈ I implies axb ∈ I, which are
introduced in [13].

Also, we say that R is reduced if R has no nonzero nilpotent elements, that
is, for each a in R, an = 0, for some positive integer n implies a = 0. McCoy
[9] proved that R is reduced iff for each a in R, a2 = 0 implies a = 0.

A near-ring R is called reversible if for any a, b ∈ R, ab = 0 implies ba = 0,
and R is said to be strongly reversible if for any a, b ∈ R and for each ideal I of
R, ab ∈ I implies ba ∈ I. On the other hand, we say that R has the reversible
IFP in case R has the IFP and is reversible.

A (two-sided) R-subgroup of R is a subset H of R such that (i) (H, +) is
a subgroup of (R, +), (ii) RH ⊂ H and (iii) HR ⊂ H. If H satisfies (i) and
(ii) then it is called a left R-subgroup of R. If H satisfies (i) and (iii) then it
is called a right R-subgroup of R. In case, (H, +) is normal in above, we say
that normal R-subgroup, normal left R-subgroup and normal right R-subgroup
instead of R-subgroup, left R-subgroup and right R-subgroup, respectively.
Note that normal right R-subgroups of R are the same concepts of right ideals
of R.

Also, a subset H of R together with (i) RH ⊂ H and (ii) HR ⊂ H is called
an R-subset of R. If this H satisfies (i) then it is called a left R-subset of R,
and H satisfies (ii) then it is called a right R-subset of R.

A near-ring R is called left regular (resp. right regular) if for each a in R,
there exists an element x in R such that

a = xa2(resp. a = a2x).

A near-ring R is called strongly left regular if R is left regular and regular,
similarly, we can define strongly right regular. A strongly left regular and
strongly right regular near-ring is called strongly regular near-ring.

A near-ring R is called left κ-regular (resp. right κ-regular) if for each a in
R, there exists an element x in R such that

an = xan+1(resp. an = an+1x)

for some positive integer n. A left κ-regular and κ-right regular near-ring is
called κ-regular near-ring.

An integer group (Z2,+) modulo 2 with the multiplication rule: 0·0 = 0·1 =
0, 1 · 0 = 1 · 1 = 1 is a near-field. Obviously, this near-field is isomorphic to
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Mc(Z2). All other near-fields are zero-symmetric. Consequently, we get the
following important statements.

Lemma 2.1. [13] Let R be a near-field. Then R ∼= Mc(Z2) or R is zero-
symmetric.

In our subsequent discussion of near-fields, we will exclude the silly near-field
Mc(Z2) of order 2. Evidently, every near-field is simple.

Lemma 2.2. [13] Let R be a near-ring. Then the following statements are
equivalent: (1) R is a near-field.

(2) Rd 6= 0 and for each nonzero element a in R, Ra = R.
(3) R has a left identity and R is R-simple as an R-group.

Now, we shall give the notion of an (m,n)-potent near-ring and illustrate
this concept with suitable examples.

Definition 1. We say that a near-ring R has the (m,n)-potent condition if for
all a in R, there exist positive integers m,n such that amR = Ran. We shall
refer to such a near-ring as an (m,n)-potent near-ring.

Obviously, every (m,n)-potent near-ring is zero-symmetric. On the other
hand, from the Lemmas 2.1 and 2.2, we obtain the following examples (1), (2),
and including other three examples.

Example 1. (1) Every near-field is an (m,n)-potent near-ring for all positive
integers m,n.

(2) The direct sum of near-fields is an (m,n)-potent near-ring for all positive
integers m,n.

(3) Every subcommutative near-ring is an (1, 1)-potent near-ring.
(4) Every Boolean subcommutative near-ring is an (m,n)-potent near-ring

for all positive integers m,n.
(5) Let R = {0, a, b, c} be a Klein 4-group under addition. This is a near-ring

with the following multiplication table (p. 408 [13]):

· 0 a b c

0 0 0 0 0
a 0 b c a
b 0 c a b
c 0 a b c

This near-ring is (1, 1), (1, 4), (2, 2), (2, 4), (3, 3), (4, 1), (4, 2), (4, 4)-
potent, but not Boolean.

A near-ring R is called left S-unital (resp. right S-unital) if for each a in R,
a ∈ Ra (resp. a ∈ aR).
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Lemma 2.3. Let R be a zero-symmetric and reduced near-ring. Then R has
the reversible IFP.

Proof. Suppose that a, b in R such that ab = 0. Then, since R is zero-
symmetric, we have

(ba)2 = baba = b0a = b0 = 0

Reducedness implies that ba = 0.
Next, assume that for all a, b, x in R with ab = 0. Then

(axb)2 = axbaxb = ax0xb = ax0 = 0

This implies axb = 0, by reducedness. Hence R has the reversible IFP. �

Lemma 2.4. [13] R = R0 if and only if every left ideal of R is a left R-subgroup
of R.

Proposition 2.5. Let R be an (n, n + 2)-potent reduced near-ring, for some
positive integer n. Then R is a left κ-regular near-ring.

Proof. Suppose R is an (n, n+ 2)-potent reduced near-ring. Then for any a in
R, we have that

anR = Ran+2

This implies that an+1 ∈ anR = Ran+2. Hence there exists x in R such that
an+1 = xan+2, that is, (an − xan+1)a = 0. From Lemma 2.3, we see that
a(an − xan+1) = 0. Also, we can compute that an(an − xan+1) = 0 and
xan+1(an − xan+1) = 0. Thus from the equation

(an − xan+1)2 = an(an − xan+1)− xan+1(an − xan+1) = 0− 0 = 0

and reducedness, we see that an = xan+1. Consequently, R is a left κ-regular
near-ring. �

Corollary 2.6. Let R be an (1, 3)-potent reduced near-ring. Then R is a left
regular near-ring.

Proposition 2.7. Let R be an (1, 2)-potent near-ring. (1) If R is reduced,
then R is a left S-unital near-ring.

(2) If R is right S-unital, then R is a left regular and reduced near-ring.

Proof. Since R is an (1, 2)-potent near-ring, consider the equality, aR = Ra2

for each a in R.
(1) From a2 ∈ aR = Ra2, there exists x in R such that a2 = xa2. This

implies that (a−xa)a = 0. Since R is zero-symmetric and reduced, Lemma 2.3
guarantees that a(a−xa) = 0 and xa(a−xa) = 0. Hence we have the equation

(a− xa)2 = a(a− xa)− xa(a− xa) = 0− 0 = 0

Reducedness implies that (a − xa) = 0, that is, a = xa, for some x ∈ R.
Therefore R is left S-unital.
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(2) Since R is right S-unital and has (1, 2)-potent condition, for each a ∈ R,
a ∈ aR = Ra2. Thus a = xa2, for some x ∈ R. Also, in this equation, a2 = 0
implies that a = 0. Hence R is a left regular and reduced near-ring. �

Proposition 2.8. Let R be an (2, 1)-potent near-ring. (1) If R = Rd is re-
duced, then R is a right S-unital near-ring.

(2) If R is left S-unital, then R is a right regular and reduced near-ring.

Proof. This proof is an analogue of the proof in Proposition 2.6. �

Theorem 2.9. Every homomorphic image of an (m,n)-potent near-ring is also
an (m,n)-potent near-ring.

Proof. Let R be an (m,n)-potent near-ring and let f : R −→ R′ be a near-ring
epimorphism. Consider an equality amR = Ran, for all a ∈ R, where m,n are
positive integers.

We must show that for all a′ ∈ R′, a′mR′ = R′a′
n, for some positive integers

m,n. Let a′, x′ ∈ R′. Then there exist a, x ∈ R such that a′ = f(a) and
x′ = f(x). So we get the following equations:

a′
m
x′ = f(a)mf(x) = f(am)f(x) = f(amx) = f(yan) = f(y)f(a)n = f(y)a′n,

where amx ∈ amR = Ran, so that there exist y ∈ R such that amx = yan.
This implies that a′mR′ ⊂ R′a′n.

In a similar fashion, we obtain that R′a′n ⊂ a′
m
R′. Therefore our desired

result is completed. �

Now, we shall discuss the behavior of R-subgroups and ideals of (1, n)-potent
near-ring. To start with, we have the following:

Theorem 2.10. Every left R-subgroup of an (1, n)-potent near-ring R is an
R-subgroup.

Proof. Let A be a left R-subgroup of R. Then we see that RA ⊂ A. To show
that AR ⊂ A, let ar ∈ AR, where a ∈ A, r ∈ R. Since R has (1, n)-potent
condition, we have ar ∈ aR = Ran. This implies that

ar = san = (san−1)a ∈ Ra ⊂ RA ⊂ A,

for some s in R. Hence A is an R-subgroup of R. �

From the Lemma 2.4 and Theorem 2.10, we obtain the following statements.

Corollary 2.11. (1) Every left ideal of an (1, n)-potent near-ring R is an ideal
of R.

(2) Every left ideal of an (1, n)-potent near-ring R is an R-subgroup of R.
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