WE FE FREe Rk

W14% B9, 2009, 7. 2009-14-7-4-4

The method for protecting contents on a multimedia system

Seong-Ki Kim *

ZE[D|C{of MAROM BHXE 5517 93 Wy

Abstract

As a DRM is recently being removed from many sites, the content protection on a video server becomes
important. However, many protection methods have their own limitations, or arent used due to the deterioration
of the streaming performance. This paper proposes a content protection method that uses both the eCryptFS and
the SELinux at the same time, and measures the performance of the proposed method by using various
benchmarks. Then, this paper verifies that the method doesnt significantly decrease the streaming performance
although the proposed method decreases the other performances, so it can be used for the content protection in
a multimedia system.

O of
=€

DRM©| 20l §-& Ale]EellA A AR o} do) whal uit) e Mu} Aol Zrl2 BEE szt 18U 7=
of BAshs B3 WHES B 22 7HAY 2581 A%S AR *1—%5101%1 7 ek B =R
eCryptFSeh SELlnux AMehe Eelx B3 HhS A oksla Thokel Wi o3k Hio] A
< EHIT IR F B =R ALY ol tE A% 58 AR5 ézam *é‘sfi ABIAI71AL koA
SRz H3E 93l AE 4= ke AL Frshd

» Keyword : Content protection, Multimedia system, DRM, eCryptFS, SELinux

« 1AL AMT)
«£10gl 0 2009. 06. 01, MAKY © 2009. 07. 01, AXFHHEY : 2009. 07. 17.
"WARA DSTE AgAT

114 HEAFEEREE H0EE(2009. 7))

| . Introduction

Protection against the Internet piracy on a client and an
illegal access on a video server becomes important because
contents are precious assets of their providers, and the
entire duplications are difficult differently from a web
system. However, the proliferation of both the Internet and
the Peer-To-Peer (P2P) networks, and various attacks
make content protection difficult. Thus, powerful protection
must be applied to the multimedia system.

An attacker can try to illegally access the contents
largely at a server and a client, and the DRM (Digital
Rights Management) protects the contents at a client.
However, the DRM tends to be removed (11(2) due to its
complexity. Within this trend, any determined methods dont
exist for a content protection at a server.

In order to protect a server, technologies such as a
firewall, an IDS (Intrusion Detection System) and an audit
trail have improved. However, these technologies have their
own fundamental limitations. For instance, a firewall cant
protect a system against an internal intruder. In addition,
once the root privilege of a target system is gained by an
intruder, there are no other ways to protect the system only
with a firewall. An audit trail has the problem that it cant
prevent an intrusion but only help trace the intruder by
leaving messages. In addition, they cant protect themselves
from being killed because they operate at a user level.
These problems lead many researchers and vendors to place
a focus on the protection at a kernel level.

Despite the advantages of a protection at the kernel level,
they haven't been also used for a multimedia system
because of the deterioration of its performance. For example,
the encryption by a cryptographic file system or the
permission check by an access control can decrease the
streaming performance, and significantly decrease the
number of concurrently served users. This paper verifies
that the streaming performance isn't significantly decreased
even when both of them are used at the same time.

This paper is organized as follows: Section 2 describes
the related works for a content protection. Section 3
proposes the eCryptFS and the SELinux for a multimedia

system, and verifies that their usages don't significantly
decrease the streaming performance. Section 4 concludes all
of these works.

I1. Related Works

This section describes DRM (3], cryptographic file
systems such as Cryptfs (4) and eCryptFS (5), and SELinux
(6).

2.1 DRM

To protect content on a client, DRM (Digital Rights
Management) emerged as one of approaches. Rosenblatt and
Dykstra (3) defined the DRM from two points of view.
From the narrower viewpoint, DRM is defined as follows:
DRM is the persistent protection of digital data. This means
that DRM protects digital content by an encryption and an
access control that determines a permitted user. From the
broader viewpoint, DRM is defined as follows: DRM is
everything that can be done to define, manage, and track
the rights to digital content. This means that DRM includes
all of the technologies that can be used for managing and
tracking digital contents on machines connected through the
Internet (3)(7).

DRM protects content from an illegal usage via an
encryption and an access control on a client, and tracks the
content after distribution. Figure 1 shows the DRM process.

Delivery system

Client
Content packager

License system

Producer Consumer

Fig 1. DRM process

In Figure 1, when an author finishes creating content
that will be served, he or she sends the content to a content
packager. The content packager adds some metadata to the
received content by using watermarking technology for

HErtel Al2gldA ZH2E B3] A3 Y 115

controlling the user access when the content is downloaded,
and encrypts the content. The content is published to clients
when delivered to a delivery system for a VOD (Video on
Demand) or a broadcasting service. License information,
including the decryption key, is delivered to a license
system. When a client wants to watch the content, the
client verifies whether the client has an appropriate
permission to watch it or not. If the client has the
permission, the client downloads decoding information,
including the decryption key from the license system. The
client begins playing the content by using the downloaded
decoding information. In a summary, DRM is an external
access control protecting contents by encryption.

Through watermarked information within the metadata,
DRM can place limitations on the playing counts, the
playing devices, the playing users, and allow accesses to
only those users who pay the appropriate value for the
requested content.

However, DRM is recently viewed skeptically (8], and it
recently tends to be removed from many sites (1)(2) due to
its complexity.

2.2 CryptFS and eCryptFS

CryptFS is a stackable cryptographic file system that can
operate on top of various file systems. CryptFS supports
only a single encryption algorithm, Blowfish (9], and
implements only a limited key management scheme.
eCryptFS (5] extends these CryptFS, and additionally
supports the AES (10), CAST (11) and TwoFish [12]
algorithms. Figure 2 shows the call paths of both CryptFS
and eCryptFS.

{ Application
i 1
[VFS
i i
{ CryptFS, eCryptFS
: |
[VFS
1 1
(File System
: I
i Raw Device |

Fig 2. Call paths of CryptFS and eCryptFS

In Figure 2, whenever an application or a user makes a
request to a file system, the request is translated into a
vnode level call, which invokes its equivalence that encrypts
or decrypts the contents, and invokes the original file
gystem through the vnode level call [13).

Although CryptFS and eCryptFS are fast and secure
because they are implemented at the kernel level, they have
a common weakness that they can be controlled by an
intruder who already gains the root privilege because they
are implemented as a dynamically loadable kernel module,
and don’t have any mechanisms to control the unload
system calls.

eCryptFS was integrated into a Linux kernel since a
version 2.6.19.

2.3 SELinux

NSA (National Security Agency) and SCC (Secure
Computing Corporation) developed SELinux (Security
Enhanced Limux) that implemented a Flask architecture (6),
and the goal of the architecture was to support both
policy-flexible and transparent architecture for a variety of
access controls. This goal was achieved by separating a

security server from an ohject manager as shown in Figure
3.

Client

lObject Request

Object Manager Security Server
Query
Policy Enforcement Degision Security Policy
Enforcement Policy

Fig 3. Flask architecture

The Flask architecture (6] separates a policy enforcement
logic from a security policy logic by distinguishing a
security server from an object manager. The object
manager manages objects that clients want to access. The
security server determines whether an access is legal or not

based on a server policy.

116 HEA T EHREE HEE(2009. 7))

If a client wants to access an object that is managed by
the object manager, the client firstly makes a request to the
object manager. The object manager determines whether
the access is legal or not after querying to the security
server with MAC (Mandatory Access Control) (14), RBAC
(Role Based Access Control) (15) or TE (Type
Enforcement). Because each security server can have a
different policy, SELinux can support any security policies
as far as a security server is implemented while following
pre-determined interfaces and the policies.

SELinux was integrated into a Linux kernel since a
version 2.6.

Ill. Proposal of eCryptFS and SELinux
as a content protection method

This section proposes a content protection method,
presents the overheads when using the SELinux or the
eCryptFS, and presents that using both of them at the same
time doesn't seriously decrease the streaming performance.

3.1 Description

All of the access controls have a common weakness that
they are vulnerable to both a low-level access and a
physical attack. If an intruder finds a way to access the
data under the level of an access control, then the intruder
can access all of its information. In addition, if an intruder
can go outside with the protected disk, physically attach the
disk to another system without any access controls, and
mount the disk, then all of its information can be revealed.
These low-level and physical problems can be addressed by
using a decryption or an encryption when reading or writing
data. In this case, even if an intruder accesses the data
under the level of an access control, or steals the disk, then
the intruder cant see its information due to an encryption.

In the aspect of a cryptographic file system, a
cryptographic file system can't protect, itself because the file
system is built as a dynamically loadable kernel module or a
user-level application without any self-protection
mechanisms. This self-protection problem can be addressed
by controlling the unload or the kill privilege of an access

control. In other words, when a cryptographic file system is
used with an access control, these two mechanisms can
complement each other.

To complement each other, we proposed that used these
two mechanisms at the same time. Among the available
cryptographic file systems and the available access controls,
we proposed the SELinux and the eCryptFS because they
were integrated into a kernel, and they supported various
algorithms.

3.2 Performance

With security enhancing mechanisms, a system has no
choice but to increase overheads because of the permission
check as well as both the encryption and the decryption.
This subsection describes the overheads of the eCryptFS
and the SELinux by using the Unixbench (16), Lmbench
(17) and Bonnie++ (18). This subsection also describes the
overheads during the streaming process when both the
eCryptFS and the SELinux are used at the same time.

3.2.1 Unixbench

In Unixbench, system call performs a fixed number of
system calls. Pipe throughput measures the communicating
ability through a pipe among processes. Pipebased context
switching shows the communicating ability between a
parent process and a child process. Process creation counts
the number of children that a process can fork. Execl
throughput replaces a process with a new one. FR, FW and
FC measure the number of characters read from a file,
written and copied to a file within a given time. Lastly, shell
scripts execute a shell script via concurrently running
processes (16).

Table 1 shows the overheads measured by Unixbench
when the system has the SELinux or the eCryptFS with the
written encryption algorithm. All of the numbers are the
overheads by percent (%) when compared with the system
without any security mechanisms such as the SELinux and
the eCryptFS. These overheads are shown by using the
Table because a table is more visible than the Figure due to
many rows. These overheads were measured after applying
the SELinux or eCryptFS with the encryption algorithm to
the test directory of the Unixbench. The Unixbench couldn’t
measure the overheads of both the SELinux and the

Heutio] AlaEldM Zh2E B

foi
ol
Ok
g
o
=
o
jin'

117

eCryptFS at the same time because the Unixbench didn’t
work when both of them were simultaneously applied to the
test directory. They didn’t operate at the same time when
writing to a file in the encrypted directory by the eCryptFS.
The version of Unixbench was 4.0, and the overheads were
measured on the Linux version 2.6.23.9-85.fc8 on Pentium 4
2.6 Ghz and 512 MB RAM.

Table 1. Overheads by Unixbench

eCryptFs
Aest | Tadi | Hos
28 sh sh i

018 | 027 | 019 | 0.4

011014 | 08| 013

124 | 012 | 0.24 0

177 | 0% | 081 | OB

0.01 | 0.26 | 067 | 0.65

443 | 572 { 512 | 622

&H/ | 9701 | 90 | B3

BB | DA | B | BA

6.11 | 624 | 681 | 591

BWB | I2 | 976 | B

A2 | BE | B2 | BT

552 | 5.09 | 6.33 | 5.16

AUBL | 962 | BB | B2

9H# | BB | AR | BB

6.69 | 6.41 | 7.88 | 4B

In Table 1, the performances became better in some
cases. These performance increases could be thought as a
measurement error or a cache effect.

The overheads of both the system call and the process
creation weren't meaningfilly increased with the SELinux
or the eCryptFS. However, the Pipe Throughput, the
Pipe-based Context Switching and the Execl Throughput
overheads were increased by average 9.07% when the
SELinux protected the content. As reasons of these

increases, the SELinux checks the permission. The
overheads of the eCryptFS were slight in the Pipe
Throughput, the Pipe-based Context Switching and the
Execl Throughput cases because they weren'’t related with
the eCryptFS.

In the FR, the FW and the FC cases, the SELinux
slightly increased overheads by average 0.69% because
these cases weren't related with the SELinux. However, the
average 96.07% overhead occurred in the FW and the FC
cases, and the 5.64% average overhead occurred in the FR
case by the eCryptES. In the case of the Shell scripts, the
average overhead by the eCryptFS was similar with the
SELinux and was about 8.22%.

The overheads of the FW and the FC were slightly
decreased as the buffer size increased because more blocks
could be read into a buffer while gathering the decryption
overheads. eCryptFS with the 3des showed the worst
performance in the FW and FC cases, and eCryptFS with
the Aes128 showed the best performance in the FW and FC
cases. We omitted the reasons why these differences
occurred because the difference among encryption

algorithms is out of scope of this paper.

3.2.2 Lmbench

In Lmbench, simple syscall calls a getppid system call.
Simple read reads data from /dev/zero, and simple write
writes data to /dev/null. Simple stat opens a file and obtains
its information. Process fork +exit performs the written
operation and measures the elapsed time (17].

Table 2 shows the overheads measured by Lmbench
when the system has the SELinux or the eCryptFS with the
written encryption algorithm. These overheads were
measured after applying the SELinux or the eCryptFS with
the algorithm to the file system directory of the Limbench.
The Lmbench couldn’t also measure the overheads of both
the SELinux and the eCryptFS at the same time because
the Lmbench didn’t also work when both of them were
simultaneously applied to the file system directory. The
version of Lmbench was 2.5, and the overheads were
measured on the Linux version 2.6.23.9-85.fc8 on Pentium 4
2.6 Ghz and 512 MB RAM.

118 wEHAFHBEREE HE(2009. 7))

Table 2. Overheads by Lmbench

SEL eCryptES
% Ak Cast Aest I Twof | Blow 3Des
5 28 ish | “fish
Simple 021 | 032 | 231 | 062 | 064 | 054
syscall
Simele 071 | -1.76 | 043 | -158 | 183 | 023
read
Simple 47 | 016 | 144 | 088 | 02 | 327
WrIte:
. M2z | N3 | 119 | 123
Simple stat 18.6 12.7 5 8 g 2
Process
. 15 | 087 | 016 | 147 | 084 | 076

In Table 2, the performances also became better in some
cases due to the reasons that could be thought as a
measurement error or a cache effect.

The simple syscall, the simple read, the simple write and
the process fork +exit weren't meaningfully increased with
the SELinux and the eCryptFS because they weren't related
the encryption or the decryption. Although the SELinux
checked permissions, it didn’t largely decrease these
performances.

However, the 18.6% overhead additionally occurred by
the SELinux and the 11.92% average overhead occurred by
the eCryptFS in the simple stat case due to the file
operations in the file system directory.

Also, 3des had the worst performance, and Aes128 had
the best performance.

3.2.3 Bonnie++

Bonnie+ + includes a lot of simple tests such as a
creation, reading and deleting of small files. Bonnie++
measures the speeds of a sequential output, a sequential
input and random seeks. The sequential output measures
the speeds of per-character write, the block write and the
rewrite, and the sequential input measures the speeds of
per—character read and block read. The random seeks
measures the speed that randomly secks within a file, reads
a block and writes back the 10% of the read block.

Table 3 presents the overheads measured by bonnie++
when the system has the SELinux or the eCryptFS with the
written encryption algorithm. All of the numbers are also
the overheads by percent (%) when compared with the
general system. These overheads were measured after
applying the SELinux or the eCryptFS with the encryption

algorithm to the test directory of the bonnie++. The
Bonnie++ couldn'’t also measure the overheads of both the
SELinux and the eCryptFS at the same time because the
Bonnie++ didn’t also work when both of them were
simultaneously applied to the test directory of Bonnie++.
The version of bonnie++ was 1.03c, the number of files was
100, the tested file size was 2048 MByte, and the chunk size
was 1024 Byte. The test was also measured on the Linux
version 2.6.23.9-85.c8 on Pentium 4 2.6 Ghz and 512 MB
RAM.

Table 3. Overheads by Bonnie++

SELi SCofs
% Pest | Twch | Bod ~
nux: | Cash 28 - o 3des
S P‘:cg’f' 0 | o7 | BB | &8 | 5141 | BT
ntal ek | 06 | 1| @@ | B | 772 | um
M [write || 077 | 0% | @2 | %61 | BR | 25
Seae | Perdher || o0 | my | @ | R | B | 5%
ntial acter
inout | Block || 002 | 8% | &221 | 6921 | @84 | &7
H’nfb Seck || 212 | om0 | 272 | U9 | 1965 | tom

In Table 3, the performance also became better in some
cases due to the reasons that could be also thought as a
measurement error or a cache effect.

The overheads only with the SELinux weren't large in
all cases. However, the overheads with the eCryptFS were
large in most of the cases. The average overhead of the
SELinux was 0.53%. The average overheads of the
eCryptFS were 51.21%, 77.43% and 76.81% in the
per—character write case, the block write case and the
rewrite case of the sequential output. The average
overheads of the eCryptFS were 73.49% and 71.08% in
per-character read case and block read case of the
sequential input. The average overhead of the eCryptF'S
was 15.52% in the random seek case. The eCryptFS with
the 3des algorithm also had the worst overhead in most of
the cases.

As reasons why the read performance was worse than
the measurement by the Unixbench, the Bonnie++ measured
all performance before an optimizer realized that it was all
bogus (18]. Thus, the Unixbench showed that the read

HE| o] AlxgelA 2

Hz25 25| 93 W 119

overhead was much smaller than the write overhead, but
the Bonnie++ showed that the read overhead was similar
with the write overhead.

3.2.4 Streaming performance

We measured the performance in order to measure the
decreasing degree when using the SELinux or the eCryptFS
with the written encryption algorithm. Table 4 shows the
streaming overhead when the system has no protection
mechanisms, only the SELinux, only the eCryptFS, and both
the SELinux and eCryptFS at the same time. The server
machine ran the Darwin streaming server 5.5 (19) and
Linux version 2.6.23.9-85.fc8 on Pentium 4 2.6 Ghz CPU and
512 MByte RAM. The client machine ran the Quicktime
player 7.3 and the Windows XP with a service pack 2 on
the Pentium 4 2.0 Ghz CPU and the 256 MByte RAM.

2 files were encoded from a single movie, and had the
same 320x240 size, the same 25 FPS and the same
approximate 37 min length. The only difference between
them was that the first file was encoded with 756.24
Kbits/S, 94.53 KByte/S, data rate and 207.24 MByte size,
and the second file was encoded with 1.71 Mbits/S, 218.88
KByte/S, data rate and 461.74 MByte size. In Table 4, LQ
means a low-quality file, the first file, and HQ means a
high—quality file, the second file. We made a request to the
high—quality file for 1 hour with repeat option and a request
to the low-quality file for another 1 hour also with the
repeat option between about 11:20 and about 13:30 while
minimizing user or machine interventions. We measured the
performance during 6 days while collecting the packets
between the server machine and the client machine by the
WinDump (20, and analyzed the packets for the data rate.

Table 4. Streaming performance of a high-quality file and
a low-quality files to 1 client

eCrvptFS

. -- E
| s 28 sh ,
‘j{ 298 2100]

0 3 5

1l 2098 2(37 ZD.7 2(9.7 2100 | 286

RN | LB | LB | 28| BOT | LI
BO1 | @B | R | 20 | BB

Table 4 presents the results after dividing the amount of
the received data by the time when the streaming server
delivers high-quality and low-quality files to 1 client.
Overall, Table 4 presents that the transferring speed isn't
meaningfully decreased. The high-quality file is encoded
with 218.88 KByte/S, and the average transferred speed of
the high—quality file is 209.29 KByte/S even with the
SELinux or the eCryptFS. When considering that the
average transferred speed without any of them is 209.80
KByte/S, only the slight decrease occurred. The low—quality
file was encoded by using 94.53 KByte/S bandwidth, the
average transferred speed of the low—quality file was 92.94
KByte/S with the SELinux or the eCryptFS, and the
average transferred speed without any of them was 92.92
KByte/S. The slight increase is within an error range. From
the user’s viewpoint, the two files were watchable even
when protected by both the SELinux and eCryptFS at the
same time, and had no large difference in the unprotected
case and in the protected case.

We measured the streaming performance with the other
50 clients because we thought that enough resources could
lead to the similar performance in the Table 4. Although the
read speed is decreased when decrypting the files encrypted
by the eCryptFS, the streaming process required only the
constant speed. Thus, we could think that the streaming
performance could be seriously decreased if the network
became a rare resource, and more overloads were given to
the server.

Table 5 shows the streaming performance when a video
server has the other 50 concurrently connected users. The
third machine for adding a server load ran a streaming load
tool in the Darwin streaming server 5.5 and Windows Vista
on an Intel Core 2 T7200 2.0 Ghz CPU and 1 GB RAM.
This third machine ran the streaming load tool with setting
the concurrent user to 50. At this third machine, we made
requests to the high—quality file and the low—quality file
with the repeat option between about 13:40 and about 15:50
while also minimizing user or machine interventions. We
also collected the performance during 6 days by the
WinDump (20]. In Table 5, HQ also means a high-quality
file, and LQ also means a low-quality file.

120 AT RS H3Ek(2009. 7))

Table 5. Streaming performance of a high-quality file and a low-quality
files to 51 clients

No eCryptFS

Twofi | Boaf

28 sh sh

2100 | 288 | 2100 | 289 | 209
5 0 1 4 1

2101 | 2101 | 2088 | 2102 | 209
5 4 1 5 9

BA | BB | BB | 932
BLI | B2 | BB | B2 | BB

KBytes/S

Table 5 presents the results also after dividing the
amount of the received data by the total time when
streaming high—quality and lowquality files to 51 clients.
Overall, Table 5 also presents that the streaming
performance isn't significantly decreased. The high-quality
file was encoded as 218.88 KByte/S, the average speed of
the high-quality file is 210.00 KByte/S with the SELinux or
the eCryptFS, the average transferred speed without any of
them is 210.10 KByte/S. The low—quality file was encoded
as 94.53 KByte/S, the average transferred speed of the
low-quality file is 93.20 KByte/S with the SELinux or the
eCryptFS, and the average speed without any of them is
93.29 KByte/S. From the user’s viewpoint, the files were
also watchable and had no significant difference in the
unprotected case and the protected case with the SELinux
or the eCryptFS.

We wanted to measure these performances with more 60
clients, but the QuickTime Player sometimes reported an
error even without the SELinux or the eCryptFS, not
enough bandwidth, thus the performance couldn’t be
measured with more 60 clients.

The reasons why the streaming performance wasn’t
decreased could be thought as follows. First, the read
performance with an optimizer wasn't significantly
decreased by either the SELinux or the eCryptFS as shown
in Table 1. Although the read performance without an
optimizer was significantly decreased by the SELimux or the
eCryptES as shown in Table 3, the file accesses by the
streaming processes were continuous and the optimizer
could be easily utilized. Second, the file buffering by either a
file system or a streaming server could minimize the
overheads. The file system and the streaming server usually

used the buffering technologies that could minimize the read
overheads. Third, although the decryption was used, and the
read speed was decreased, the read speed could be still
faster than the required speed for a client display even withe
ad overheadsThe client usually required only the constant
speed for a streaming process, and didn’t require more
speeds. Thus, the decryption didn't prevent the streaming
processes only if the read and decryption speeds were faster
than the streaming speeds to clients. When a system
overhead wasn't significant, the overall performance at a
user level wasn’t decreased also in (21] due to these

reasons mentioned above.

[V. Conclusion

In this paper, we proposed that both the eCryptFS and
the SELinux should be used at the same time because they
could complement each other for a content protection in a
multimedia system. Among many available access controls
and many available cryptographic file systems, we proposed
the SELinux and the eCryptFS for a dedicated multimedia
system because they were integrated into a Linux kernel,
and supported various algorithms. In this paper, we also
presented that using both of the SELinux and the eCryptFS
didn’t largely prevent the streaming processes to 51 clients
although the other processes besides the streaming process
were prevented, and their performances became worse.

Reference

(1) EMI group, EMI Music launches DRM-free
superior sound quality downloads across its
entire digital repertoire, http://www.emigroup.
com/Press/2007/press18.htm, April 2007.

(2] Erin, J., Amazon To Sell DRM-Free Music,
http://www.internetnews.com/ec-news/article.p
hp/3678181, May 2007.

(3] Rosenblatt, B. & Dykstra, G., ’Integrating

with digital

management: Imperatives and opportunities for

content management rights

digital content lifecycles”, Technical report,

Feju o] Al Ao ZH2E HE37] 93 ¥y 121
Giantsteps Media Technology and Dykstra 3, 141-148%, 20054 34.
Research, May 14 2003. (15) Ferraiolo, D. F., Sandhu, R., Gavrila, S.,

(4) Zadok, E., Badulescu, I., & Shender, A.,
"Cryptfs: A stackable vnode level encryption file
system”, CUCS-021-98,

Department,

Technical Report
Computer Science
University, 1998.
Halcrow, M., "eCryptfs: a stacked cryptographic
filesystem”, Linux Journal, Vol. 2007, Issue 156,
April 2007.

Spencer, R., Smalley, S.. Loscocco, P., Hibler,
M., Andersen, D., & Lepreau, J., “The Flask
Security Architecture:

Columbia

(5

P}

—
o))
i)

System support for
of the 8th

123-139,

diverse security policies”, Proc.
USENIX Security Symposium, pp.
Washington, DC, August 1999.

(7) Arnab, A., & Hutchison, A., "Digital rights
management-a current review’, Departmental
Technical Report No. ¢s04-04-00, University of
Cape Town, 2004.

(8) Felten, E. W., "A skeptical view of DRM and fair
use’, Communications of the ACM, Vol. 46, No.
4, pp. 56-59, 2003.

(9] Schneier, B., "Applied Cryptography”, 2nd Ed.,
John Wiley & Sons, 1995.

(10} Daemen, J., & Rijmen, V., "The Design of

Rijndael: AES - The Advanced Encryption

Standard’, Springer-Verlag, 2002.

Adams, C., "The CAST-128 encryption
algorithm”, RFC 2144, Network Working Group,
May 1997,

{12) Schneier, B., Kelsey, J., Whiting, D., Wagner,
D., Hall, C., & Ferguson, N., "The Twofish
Encryption Algorithm: A 128-Bit Block Cipher”,
John Wiley & Sons, 1999.

(13] Wright, C. P., Dave, J., & Zadok, E.,
“"Cryptographic file system performance: What
you don't know can hurt you”, Proc. of 2003
[EEE Security In Storage Workshop, pp. 47-61,
October 2003.

(14) 19, "Bxt SAHAAE A3 ZAH A Ao B3
Zeo’, FAFEHPRAY =84, A 104, A 1

(11

Kuhn, D. R., & Chandramouli, R., "Proposed
NIST standard for role-based access control”,
ACM Transactions on Information System
Security, Vol. 4, No. 3, pp. 224 - 274, 2001.
Niemi, D. C., Unixbench 4.1.0,
http://www.tux.org/pub/tux/niemi/unixbench
(17) McVoy, L., & Staelin, C., lmbench 2,
http'//sourceforge. net/projects/Imbench

(16]

(18] textuality-Bonnie,
http://www.coker.com.aw/bonnie ++/

(19]) Darwin Streaming Server,

http://dss. macosforge.org/post/previous-releases/
(200 WinDump:

http://www.mirrorservice.org/sites/ftp. wiretapp

tepdump for Windows,

ed.net/pub/security/packet-capture/winpcap/wi

ndump/
(21) %5, "Hk £3AAL] eWd= 7Y 3= AFE
HRgs] =84, A 104, A 23, 11-19%, 20053 54.

M7

2000: A=thehy gL

2009: Mgk F3hAL,

2009 - EA): AR DS BE A

o]
1.

el WaAe), iz wE
8 Az, T

5

