High Resolution Elements Analysis in N-E Pacific Sediments using XRF Core Scanner

XRF 코어스캐너를 이용한 북동태평양 퇴적물 내 원소의 고해상분석

  • Um, In-Kwon (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Ji-Hoon (Korea Institute of Geoscience and Mineral Resources) ;
  • Nam, Seung-Il (Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Hun-Soo (Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Ok-Boon (Korea Institute of Geoscience and Mineral Resources)
  • Published : 2009.06.30

Abstract

The XRF core scanner was used, to analyze high resolution chemical elements in deep sea sediment cores from Clarion-Clipperton fracture zone of the northeastern Pacific. Comparison of data estimated by the XRF core scanner with ICP-AES showed relatively weak correlation coefficients between elements (especially Ba, Pb, Sr, Zr) except for Mn contents ($r^2$ > 0.89). However down-core variations of most elements seemed to be well matched each other and furthermore, XRF core scanner data reflected changes of sedimentary facies characterized by sediment colors. Mn/Al ratio dramatically changed at boundaries of facies in BC08-02-05 and BC08-02-13 but progressive changes occured in BC08-02-02, BC08-02-09 and BC08-02-10 where the sediments have been affected by bioturbations. The difference of Mn/Al ratio in each facies (Facies I, Facies II, Facies III) has been caused by redox condition of depositional environment. Vertical change of Mn/Al ratio were divided into two types probably affected by activities of benthic organisms in the study area.

북동태평양 클라리온-클리퍼톤 지역에서 채취된 주상시료 내 원소의 수직적인 변화를 살펴보기 위하여 XRF 코어스캐너를 이용하여 주요원소(Al, Ca, Fe, Mn, Ti, Ba) 및 미량원소(Pb, Sr, V, Zr, Zn)를 2 mm 간격으로 분석하였다. XRF 코어스캐너의 분석 능력을 검증하기 위하여 동일 주상시료에서 부시료를 채취하여 ICP-AES 정량분석을 실시하였다. XRF 코어스캐너와 ICP-AES 측정값의 상관계수는 Mn ($r^2$ > 0.89)을 제외하면 대체적으로 낮다. 그러나 두 측정값의 수직적인 분포형태는 매우 유사하며 퇴적물 색상에 의해 분류된 퇴적상 변화와 거의 일치된다. Mn/Al 비는 각 퇴적상(Facies I, Facies II, Facies III)에서 뚜렷한 차이를 보인다. 그리고 각 퇴적상 경계가 뚜렷한 BC08-02-05와 BC8-02-13에서는 퇴적상에 따른 뚜렷한 Mn/Al 비의 변화가 보이나, 퇴적상 경계가 생물활동으로 점이적인 BC08-02-02, BC08-02-09 그리고 BC08-02-10에서는 점이적인 Mn/Al 비가 나타났다. 각 퇴적상의 원소 함량차이는 퇴적물내 산화-환원 환경 변화에 의해서 조절되며, 원소들의 수직적인 분포형태는 퇴적물내 생물활동에 영향을 받는 것으로 나타났다.

Keywords

References

  1. 박옥분, 남승일 (2009) XRF 코어 스캐너를 이용한 시추 코어의 초고해상 화학성분 분석방법. 지질학회지, 45(1), 77-83
  2. 엄인권, 임동일, 이미경, 전수경, 정회수 (2004) 한국 동해안 영일만 표층 퇴적물의 금속함량과 공간 변화 특성. 대한환경공학회지, 25(7), 477-490
  3. 이현복, 지상범, 박정기, 검기현, 주세종, 오재경 (2008) 북동태평양 대한민국 광구 KR1, 2, 5 지역 표층 퇴적물의 물리적 특성 비교. 한국해양학회지, 13(3), 168-177
  4. 지상범, 이현복, 김종욱, 행기성, 고영탄, 이경용 (2006) 북동태평양 콜라리온-콜리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구. 자원환경지질, 39(6), 739-752
  5. 최헌수, 강중석, 장세원, 고상모, 엄인권 (2007) 망간단괴의 분화율과 망간단피 분말 및 해저퇴적물의 물리적 특성. 한국광물학회지, 20(4), 277-287
  6. Bayon, G., Pierre, C., Etoubleau, J., Voisset, M., Cauquil, R., Marsset, T., Sultan, N., Le Drezen, E., and Fouquet, Y. (2007) Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments. Marine Geology, 241, 93-109 https://doi.org/10.1016/j.margeo.2007.03.007
  7. Calvert, S.E. and Pedersen, T.F. (1993) Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113, 67-88 https://doi.org/10.1016/0025-3227(93)90150-T
  8. Colodner, D., Eduond, J., and Boyle, E. (1995) Rhenium in thc Black Sca: comparison with molybdenium and uranium. Earth and Planetary Science Letters, 131, 1-15 https://doi.org/10.1016/0012-821X(95)00010-A
  9. Cook, J.M., Gardner, M.J., Griffiths, A.H., Jessep, M.A., Ravenscroft, J.E., and Yatcs., R. (1997) THe comparability of sample digestion techniques for the determination of metals in sediments. Marine Pollution Bulletin, 34, 637-644 https://doi.org/10.1016/S0025-326X(96)00186-5
  10. Croudace, I.W. and Gilligan, J. (1990) Versaltile and accurate trace element determinations in iron-rich and other geological samples using X-ray fluoresence analysis. X-ray Spectrometry, 19, 117-123 https://doi.org/10.1002/xrs.1300190307
  11. Crusius, J., Calvert, S., Pedersen, T., and Dage. D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145, 65-78 https://doi.org/10.1016/S0012-821X(96)00204-X
  12. Diekmann, B., Hofinann, J., Henrich, R., and Futterer, D.K. (2008) Detritial sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quatemary. Marine Geology, 255, 83-95 https://doi.org/10.1016/j.margeo.2008.08.001
  13. Dixson, E.M‘, Gardner, M.J., and Hudson, R. (1997) The Comparability of sample preparation techniques for the determination of metals in sediments. Chemosphere, 35, 2225-2236 https://doi.org/10.1016/S0045-6535(97)00301-9
  14. Fisher, G., Kalberer, M., Donner, B., and Wefer, G. (1999) Use of Proxies in Paleoceanography. In: Stable Isotopes of Pteropod Shells as Recorders of Sub-Surface Water Condition, edited by Fisher, G. and G. Wefer, Springer, New York, pp. 191-206
  15. Francoise, E.P., Seidel, J.L., Jezequel, D., Metzger, E., Prevot, T., Símonucci, C., Sarazin, G., Viollicr, E., Etcheber, H., Jouanneau, J.M., Weber, O., and Radakovitch, O. (2005) Sedimentary record of redoxsensitive element (U, Mn, Mo) in a tansitory anoxic basin (the Thau lagoon, France). Marine Chemistry, 95, 271-281 https://doi.org/10.1016/j.marchem.2004.10.001
  16. Hendy, I.L. and Pedersen, T.F. (2005) Is pore water oxygen content decoupled from productivity on the California Margin? Trace element results from Ocean Drilling Program Hole 1017E, San Lucia slope, California. Paleoceanography, 20, PA4026, doi: 10.1029/2004PA001123
  17. Jansen, J.H.F., Van der Gaast, Koster, B., and Vaars, A.J. (1998) CORTEX, a shipboard XRF-scanner for element analyses in spIit sediment cores. Marine Geology, 151, 143-153
  18. Jimenez-Espejo, F.J., Martinez-Ruiz, F., Sakamoto, T., Iijima, K., GaIlego-Torres, D., and Harada, N. (2007) Paleoenvironmental changes in the westem Mediterranean since the last glacial maximum: High resolution multiproxy record from the AlgeroBalearic basin. Paleogeography Paleoclimatology Paleoecology, 246, 292-306 https://doi.org/10.1016/j.palaeo.2006.10.005
  19. Kido, Y., Koshikawa, T., and Tada, R. (2006) Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner. Marine Geology, 229, 209-225 https://doi.org/10.1016/j.margeo.2006.03.002
  20. Matthai, C., Brich, G.F., and Szymczak, R. (1998) Suboxic, early diagenetic processes in surficial sediments near a deepwater ocean outfall, Sydney, Australia. JoumaI of Geochemical Exploration, 64, 1-17 https://doi.org/10.1016/S0375-6742(98)00018-1
  21. Marz, C., Beckmann, B., Franke, C., Vogt, C., Wagner, T., and Kasten, S. (2009) Geochemical environmental of the Coniacian-Santonian westeRN tropical Atlantic at Demerara Rise. Paleogeography Paleoclimatology Paleoecology, 273, 286-301 https://doi.org/10.1016/j.palaeo.2008.05.004
  22. McKay, J.L., Pedersen, T.F., and Mucci, A. (2007) Sedimentary redox conditions in continental margin sediments (N.E. PAcific)-Influence on accumulation of redox-sensitive trace metals. ChemicaI Geology, 238, 180-196 https://doi.org/10.1016/j.chemgeo.2006.11.008
  23. Miller, P.J. and Magani, A. (1980) Organic Carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by TH-230 and Pa-231. Earth Planetary Science Letter, 51, 94-114 https://doi.org/10.1016/0012-821X(80)90259-9
  24. Morford. J.L. and Emerson, S. (1999) The Geochemistry of redox sensitive trace metals in sediments. Geochemica et Cosmochemica Acta, 63, 1735-1750 https://doi.org/10.1016/S0016-7037(99)00126-X
  25. Nameroff, T.J., Calvert, S.E., and Murray, W. (2004) Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. Paleoceanography, 19, 1-19
  26. Piper, Z. and Isaacs, C. M. (1996) Instability of bottom-water redox consitions during accumulation of Quatemary sediment in the Japan Sea. Paleoceanography, 11(2), 171-190 https://doi.org/10.1029/95PA03553
  27. Pujor, F., Bemer, Z., and Stiiben, D. (2006) Paleoenvironmental changes at the Frasnian!Famennian boundary in key European sections: Chemostratigraphic constraints. Paleogeography PaIeoclimatology Paleoecology, 240, 120-145 https://doi.org/10.1016/j.palaeo.2006.03.055
  28. Riihlemann, C., Muller, P.J., and Schneider, R.R. (1999) Use of Proxies in Paleoceanography. In: Organic Carbon and Carbonate as Paleoproductivity Proxies: Examples from High and Low Productivity Areas of the Tropical Atlantic, edited by Fisher, G. and G. Wefer, Springer, New York, 315-344
  29. Rothwell, R.G., Hoogak:ker, B., Thomson, J., Croudace, I.W., and Frenz, M. (2006) Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stage 1-3: an application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis. In: Rothwell, R.G. (ed.) New Techniques in sediment Core Amalysis. Geological Society, London, Special Publications, 267, 79-98 https://doi.org/10.1144/GSL.SP.2006.267.01.06
  30. Sangiorigi, F., Dinelli, E., Maffioli, P., Capotondi, L., Giunta, S., Morigi, C., Principato, M.S., Negri, A., Emeis, K., and Corselli, C. (2006) Geochemical and micropaleontological characterisation of a Mediterranean sapropel S5: A case study from Core BAN-89GC09 (south of Crete). Paleogeography Paleoclimatology Paleoecology 235, 192-207 https://doi.org/10.1016/j.palaeo.2005.09.029
  31. Scott, K. (1978) Cause and control of losses of chromium during nitric-perchloric acid digestion of aquatic sediments. Analyst, 103, 754-758 https://doi.org/10.1039/an9780300754
  32. Tjallingii, R., Rohl, u., Kolling, M., and Bickert, T. (2007) Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochemistry Geophysics Geosystems, 8, doi:10.1029/2006GC00I393
  33. Wehausen, R. and Brumsack, H.J. (2000) Chemica1 cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Paleogeography Paleoclimatology PaIeoecology, 158, 325-352 https://doi.org/10.1016/S0031-0182(00)00057-2
  34. Weltje, G.J. and Tjallingii, R. (2008) Caliblation of XRF core scanners for quantitative geochemicaI logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274, 423-438 https://doi.org/10.1016/j.epsl.2008.07.054
  35. Yang S.Y., Jung, H.S. Lim D.I. and Li, C.X (2003) A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 63, 93-120 https://doi.org/10.1016/S0012-8252(03)00033-3