DOI QR코드

DOI QR Code

In-line Variable Optical Attenuator Based on the Bending of the Tapered Single Mode Fiber

  • 투고 : 2009.05.20
  • 심사 : 2009.07.06
  • 발행 : 2009.09.25

초록

We propose a simple in-line variable optical attenuator (VOA) based on the bending effect of tapered single mode fibers. The influence of the taper structure and the reflective index of the external medium surrounding the taper region on the bending loss of the tapered fiber have been investigated experimentally. An attenuation range exceeding 35 dB and a very low excess loss of < 0.2 dB at 1550 nm were achieved. The measured polarization dependent loss of the present VOA at the attenuation level of 10 dB, 20 dB, and 30 dB were 0.1 dB, 0.2 dB, and 0.5 dB, respectively.

키워드

참고문헌

  1. S. S. Lee, Y. S. Jin, and T. K. Yoo, 'Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,' IEEE Photon. Technol. Lett. 11, 590-592 (1999). https://doi.org/10.1109/68.759408
  2. Y. O. Noh, C. L. Lee, J. M. Kim, W. Y. Hwang, Y. H. Won, H. J. Lee, S. G. Han, and M. C. Oh, 'Polymer waveguide variable optical attenuator and its reliability,' Opt. Comm. 242, 533-540 (2004). https://doi.org/10.1016/j.optcom.2004.09.030
  3. T. Kawai, M. Koga, M. Okuno, and T. Kitoh, 'PLC type compact variable optical attenuator for photonic transport network,' Electron. Lett. 34, 264-265 (1998) https://doi.org/10.1049/el:19980226
  4. J. H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, and S. C. Jung, 'Design and characteristics of a micromachined variable optical attenuator with a silicon wedge,' Opt. Comm. 221, 323-330 (2003) https://doi.org/10.1016/S0030-4018(03)01506-2
  5. C. Marxer, P. Ggriss, and N. F. de Rooij, 'A variable optical attenuator based on silicon micromechanics,' IEEE Photon. Technol. Lett. 11, 233-235 (1999) https://doi.org/10.1109/68.740714
  6. N. A. Riza and S. Sumriddetechkajorn, 'Digitally controlled fault-tolerant muliwavelength programmable fiber optic attenuator using a two dimensional digital micromirror devices,' Opt. Lett. 24, 83-84 (1999) https://doi.org/10.1364/OL.24.000282
  7. J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, 'In-line highly sensitive hydrogen sensor based on palladiumcoated single-mode tapered fibers,' IEEE Sensors Journal 3, 533-537 (2003) https://doi.org/10.1109/JSEN.2003.815789
  8. C. Bariain, I. R. Matas, F. J. Arregui, and M. Lopez-Amo, 'Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,' Sens. and Actuators B: Chemical 69, 127-131 (2000) https://doi.org/10.1016/S0925-4005(00)00524-4
  9. V. Morozove, H. Fan, L. Eldada, L. Yang, and Y. Shi, 'Fused fiber-optic variable attenuator,' in Proc. Optical Fiber Communication Conference (Baltimore, USA, Mar. 2000), pp. 22-24 https://doi.org/10.1109/OFC.2000.869403
  10. A. Diez, M. V. Andres, and D. O. Culverhouse, 'In-line polarizers and filters made of metal-coated tapered fibers: resonant excitation of hybrid plasma modes,' IEEE Photon. Technol. Lett. 10, 833-835 (1998) https://doi.org/10.1109/68.681501
  11. J. Villatoro, D. Monzon-Hernandez, and D. Luna-Moreno, 'In-line tunable band-edge filter based on a single-mode tapered fiber coated with a dispersive material,' IEEE Photon. Technol. Lett. 17, 1665-1667 (2005) https://doi.org/10.1109/LPT.2005.851993
  12. W. A. Gambling, H. Matsumura, and C. M. Ragdale, 'Curvature and microbending losses in single mode optical fibers,' Optical and Quantum Electronics 11, 43-59 (1979) https://doi.org/10.1007/BF00624057
  13. L. C. Bobb, P. M. Shanker, and H. D. Krumboltz, 'Bending effects in biconically tapered single mode fibers,' J. Lightwave Technol. 8, 1084-1090 (1990) https://doi.org/10.1109/50.56411
  14. P. M. Shankar, L. C. Bobb, and H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832-837 (1991) https://doi.org/10.1109/50.85782
  15. C. Bariain, I. R. Matias, and F. J. Francisco, 'Tapered optical-fiber-based pressure sensor,' Opt. Eng. 39, 2241-2247 (2000) https://doi.org/10.1117/1.1304926
  16. I. R. Matias, M. Lopez-Amo, and F. Mantero, 'Low-cost optical amplitude modulator based on a tapered single-mode optical fiber,' Appl. Opt. 40, 228-234 (2001) https://doi.org/10.1364/AO.40.000228
  17. D. H. Lee, K. H Kwon, J. W. Song, and J. H. Park, 'Variable optical fiber attenuator using bending-sensitive fiber,' J. Opt. Soc. Korea 8, 83-89 (2004) https://doi.org/10.3807/JOSK.2004.8.2.083
  18. T. A. Birks and Y. W. Li, 'The shape of fiber tapers,' J. Lightwave Technol. 10, 432-438 (1992) https://doi.org/10.1109/50.134196
  19. R. P. Kenny, T. A. Birks, and K. P. Oakley, 'Control of optical fiber taper shape,' Electron. Lett. 27, 1654-1656 (1991) https://doi.org/10.1049/el:19911034
  20. J. Villatoro, D. Monzon-Hernandez, and E. Mejia, 'Fabrication and modeling of uniform waist single-mode tapered optical fiber sensor,' Appl. Opt. 42, 2278-2283 (2003) https://doi.org/10.1364/AO.42.002278

피인용 문헌

  1. Fiber-Optic Distributed Overheating Detection Sensor Using an Optical Time Domain Refrectometry vol.22, pp.4, 2013, https://doi.org/10.5369/JSST.2013.22.4.297
  2. Development of an instrumented spinal cord surrogate using optical fibers: A feasibility study vol.48, 2017, https://doi.org/10.1016/j.medengphy.2017.06.033
  3. Control of evanescent field using a dynamic waveguide composed of gelatin-coated few-layer fiber vol.55, pp.19, 2016, https://doi.org/10.1364/AO.55.004985
  4. A Tunable-Transmission Sagnac Interferometer Using an Optical Microfiber vol.49, pp.8, 2010, https://doi.org/10.1143/JJAP.49.082502
  5. Temperature Independent Tapered Fiber Bragg Grating-Based Inclinometer vol.27, pp.21, 2015, https://doi.org/10.1109/LPT.2015.2462334