28" IS

BER Performance Evaluation on the Method of Balancing
Information Potentials for Blind Equalization
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ABSTRACT

Blind equalization techniques have been widely used in wireless communication systems. In
this paper, we investigate the information potentials in the criterion of minimizing Euclidian
distance between two PODFs criterion for adaptive blind equalizers and evaluate BER
performance of the method that has utilized an appropriate balance between the two
information potentials, one from output samples and ramdomly generated desired samples at
the receiver and another from the interactions among output samples. The balanced
information potential method has shown in the BER performance results that it can produce
significantly enhanced BER performance in blind equalization applications.

Key Word : BER, Blind equalization, ITL, Euclidian distance, PDF,
balancing effect on Information potentials.

I. Introduction ATM, and the mobile networks [1]. In

applications such as broadcast and multipoint

Wireless communication has been an networks, blind equalizers to counteract

increasingly focused topic in multipoint ~ multipath effects are very useful since they
communication networks, the Internet, the do not require a training sequence to start
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restart after a communications
[2]1[3]. involving  the
adaptive equalizers have been
developed through
theoretic optimization criteria. As a way for
solving these problems, information—theoretic
learning (ITL) has introduced by
Princepe [4]. This approach is to choose
the parameters W of the mapping g(.) such
that a figure of merit based on information
theory is optimized at the output space of
the mapper. ITL algorithms are based on a
combination of a nonparametric probability
density (PDF)
procedure to compute entropy or information
potential (IP). The difficulty in approximating
Shannon's entropy is overcome by utilizing
Renyi's generalized entropy. Estimating the

up or to
breakdown Problems
training of

the use of information

been

function estimator and a

data PDF nonparametrically is based on the
Parzen window method using a Gaussian
kernel. The combination of Renyi's quadratic
entropy with the Parzen window leads to an
estimation of entropy or
potential by computing interactions among
pairs of output samples which is a practical
cost function for ITL. This approach has
been applied to Blind deconvolution of a
linear channel by maximizing or minimizing
the output entropy of an adaptive equalizer.
Maximum entropy deconvolution is based on
the idea that when the nonlinear
output PDF is
maximizing

information

device
uniform by
its output entropy, the pdf of
equalizer output matches the pdf that is the
derivative of the nonlinearity,
nonlinearity is selected to be the cdf of the
source signal. On the other hand, minimum

forced to

where the

entropy deconvolution method is also
available. Erdogmus and his coworkers
show that the minimization of Renyi's

entropy at the output of the equalizer can
But the
global minimum of a minimum entropy Blind

achieve Blind deconvolution [5].

deconvolution criterion occurs for zero
equalizer weights, corresponding to a zero
equalizer output.
should be avoided by some measures such
as modifying
equalizer output variance.

Instead of wusing entropy minimization in
blind equalization, a new method in which
Euclidian distance between two PDOFs s
introduced [8]. The
authors investigated the interactions among
not only output samples but also ramdomly
generated desired samples at the

by utilizing Euclidian distance (ED) in their

This unwanted situation

the cost function with the

minimized has been

receiver

previous works [9]. But the method has not
BER
performance which is considered a generally
accepted performance evaluation criterion.

in this paper that BER
performance of the method which places an
appropriate balancing
interactions among output samples and
ramdomly generated desired samples at the
receiver in blind equalization environments.

been throughly investigated on its

It will be shown

factor on the

Il. Euclidian Distance of PDFs
Recently, Erdogmus introduced an
information theoretic framework based on
Kullback-Leibler (KL) divergence [7]
minimization for training adaptive systems in
supervised learning settings using both
labeled and unlabeled data [8]. The KL
divergence is a way to estimate mutual
information which is capable of quantifying
the entropy pairs  of

between random



variables. The KL divergence between two
poFs, J+ and Jy is:

KIS, f,)= [ £(&)logl£.()] f,(&)dE
(1)

Since it is not quadratic in the PDFs, it can
not be easily integrated with the information
potential  [4]. the
distance, a divergence
between two PDFs [4] has been introduced

Based on Euclidian

new measure

which contains only quadratic terms to

utilize the tools of information potential as

ED[f,.f,)= [ f2(£)dE +] f1(E)dé
2 £.OF, ()de

equalization application,

fd the

(2)

For the Euclidian

distance between transmitted

symbols PDF and fy the equalizer outputs

PDF,
equalizer weight W as

Min(EDL S, £,1)= Minl[ £ (©)dé
[ £2de-2[ £, 1,)de)

In other words, we create desired symbols
the input signal during training by
utilizing the equalizer outputs PDF and the
previously known PDF
transmitted symbols.

In this paper, we propose a method of
minimizing the Euclidean distance based on
Parzen PDFs which are computed directly
from data samples. Computing ED directly
from samples  requires
continuous and differentiable estimator for

can be minimized with respect to

for

information of the

data also a

the two probability density functions fd

AT

and fy.

method, which is in general biased but the
bias can be asymptotically reduced to zero
by selecting an unimodal symmetric kernel
function such as the Guassian and reducing
the kernel size monotonically with increasing
the number of samples.
optimal kernel size is one of the important
steps in the Parzen windowing method but

Parzen windowing is a suitable

Selection of an

in this paper it will be left for future work.
For blind channel equalization, we assume

here that the a priori probability fdof
symbols the
receiver but the exact training symbols are
the This
assumption can be considered reasonable

transmitted is known to

not available to receiver.
in most cases since the transmitter has a
particular modulation the
symbols are generally independent and
identically distributed (i.i.d) as that of the

transmitted data.

scheme and

IIl. Minimum ED Algorithm for Blind

Equalization
Given the randomly generated N
independent and identically  distributed
(i.i.d.) symbols {dl’dzadp---adzv}, the
pdf can be approximated by

1 N

f.&)=—) G, (§-d)
¢ NZ 7 (4)
where Ga(')is typically a zero—mean

Guassian kernel with standard deviation O .
If the symbols are generated randomly so
as to match with the PDF of the transmitted
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fd(é)in (4) can be

considered the same as the PDF of the

symbols, the

desired symbols. The point noticeable here
is that for Parzen PDF calculation, instead
of the exact training symbols, the randomly
generated symbols are used at the receiver.
For example, in case of bipolar transmission
with equal probability,
-1 are generated equiprobably for Parzen
PDF
symbols are used for it.
generated random numbers is the same as
that of the output symbols to be used in
cost function calculation. This makes blind

random numbers +1,

calculation but no exact desired

The number of

equalization possible because exact desired
symbols are not used.

Since integral of the two Gaussian kernels
generates with
different double standard deviation, we have

FAGIE ZZGJ(d -d)

i=l j=1

zz af(yj yl)

i=l j=1

ZZGUJ =)

i=l j=I (

another Gaussian kernel

[ 17 ©ds=

[r@fr

Equation (5) is the sum of interactions of
all pairs of randomly generated symbols.

This can be called IP of the set of

randomly generated symbols, orIP(d:d) in

this paper. By summing the interactions

among pairs of output samples we can
obtain the 1P(V,Y) of output samples as
(), IP(d,y)

between the two
Equations (6) and (7)
contain system output are a function of

in (6).
interactions

, indicates the
different
which

Equation

variables.

weight but (5) is not a function of weight

d

since J is the desired sample randomly
generated

Now we derive a gradient descent method
for the minimization of the cost function (3)

with respect to equalizer weight W.

OP
W, =W, — i~
new old :Ll 8W , (8)
where P=1P(y,y)=2-1P(d,y) .
In case of on-line linear equalization, a

tapped delay line (TDL) can be used for

_ T
Xy =[x % 05X 500X val and

input

T
output Yk =We Xy at time k (Fig. 1). The
randomly generated desired symbols

Dy =1,,dysd,,..

the equalization process regardless of time
k. Then the gradient is evaluated from

oP 1 k k
W 2N2 2 z Z(yj_yi)
k

i=k—N+1, j=k-N+1

'>dN} are used in

Gmﬁ(yj _yi)'(Xi _Xj)

ZZ(d -7,)

lk’V+1/1

(dj_yi)'Xi

(9)
This method is referred to as minimum ED
(MED) algorithm [6].

V. Balancing Effects on Information
Potentials

IP(y,y) s the

information potential of the set of randomly

Equation (6), i.e.,



generated symbols and (6), i.e., IP(d,y)
the information potential induced from the

interaction between the set of randomly

generated symbols and output samples. The

two information potentials contribute to
minimizing ED in (8) and (9). An important
aspect we should notice is that when

IP(y, ) decreases, it contributes positively

to minimization of ED but IP(d,y) has to

decrease in order to contribute to

minimization of ED. This leads us to believe

that the two information potentials are
engaging in a struggle for influence on
minimization of ED. |f we rearrange the

balance of the two information potentials,
though it can play a little bit of negative
role in minimization of ED, optimal balance
power the
potentials might be obtained. Furthermore,

minimizing the potential
IP(y,Y) can

samples rather than concentrating them on
one point as revealed in the research [5].
From we propose to put a

IP(d, y)

of between two information

information

induces spreading output

this motive,

a and

weighting factor
IP(y,¥) as follows.
Prpea = IP(.) @ =2 IP(d, ) (1-@) (1)

proposed
method has

on

This shown significantly
enhanced PDF performance in our previous
works [9]. As an extension of this research
performance evaluation, the
following section, we will give BER
performance results which is considered as

a vital evaluation criterion.

a

for its in

its

a1

AT

V. BER Results and Discussion

this
section, we present and discuss simulation

For BER performance evaluation, in

results that illustrate the comparative
performance of the proposed algorithm
versus MED and constant modulus algorithm
(CMA) [10] in blind equalization for two

linear channels. The 4 level random signal
{i39i1} is transmitted to the channel and
h

the the channel

model in [11] is

impulse response, i of

1 .
hl. :5{1+COS[27Z'(1—2)/BW]},1': 1’2’3. (11)
The parameter BW determines the channel
bandwidth the
spread ratio of the correlation matrix of the

inputs in the equalizer. In this paper, BW
=3.1 (ESR=11.12) is used. The number of
weights in the linear TDL equalizer structure

and controls eigenvalue

is set to 11. As a measure of equalizer
performance, we use BER of CMA and
MED. The convergence parameter for CMA
which have shown the lowest steady-state

MSE is 0.00001. For MED we used a

data-block size N =20, a fixed kernel
o=0.5 and
1 =0.006

size the  convergence
The

is set to 4.

d

parameter information

potential weighting factor& In

Dy =y dysd edy |

J
{i3ai 1} . We

studied the bit error rate performance of the
proposed, MED and CMA as a figure of

Randomly ordered have

merit. Their results are illustrated in Fig. 1.
CMA has shown unsatisfying performance in
BER performance. On the other hand, the
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proposed has revealed superior results. In

BER  performance comparison at BER =
10~
performance by about 1
MED,
CMA.

4, the proposed has shown enhanced

dB compared to
and by about 3 dB compared to

VI. Conclusion

The
considered a

BER performance comparison is
accepted

criterion. In this

generally
performance evaluation
paper, BER performance of the balancing
method was investigated that places an

balancing factor on the
among output

appropriate

interactions samples and
ramdomly generated desired samples at the

receiver in blind

., —=— Proposed
n i, —o—MED
e, CMA
AN
2 \\
i N
M -3 \
s \
8

'6 T T T T T T T T T 1

0 2 4 6 8 10 12 14 16
Eb/No, dB

Fig. 1. BER performance comparison

equalization environments. The balanced

information potential method has shown in

the BER performance results that it can
produce significantly enhanced BER
performance in blind equalization
applications.
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