DOI QR코드

DOI QR Code

Effects of Selenium Supplement on Germination, Sprout Growth and Selenium Uptake in Four Vegetables

셀레늄 처리가 4가지 채소종자 발아와 싹의 생장 및 셀레늄 흡수 특성에 미치는 영향

  • Cheong, Yong-Hwa (Department of Bio-Environmental Science, Sunchon National University) ;
  • Han, Myung-Ja (Department of Bio-Environmental Science, Sunchon National University) ;
  • Sung, Sun-Jin (Department of Bio-Environmental Science, Sunchon National University) ;
  • Seo, Dong-Cheol (Department of Oceanography and Coastal Sciences, Louisiana State University) ;
  • Kang, Jong-Gu (Dept. of Horticulture, Sunchon National University) ;
  • Sohn, Bo-Kyoon (Department of Bio-Environmental Science, Sunchon National University) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, Ju-Sik (Department of Bio-Environmental Science, Sunchon National University)
  • Published : 2009.06.30

Abstract

This study was carried out to investigate the effect of selenium treatment on the growth of vegetables sprout. Four vegetables, such as cabbage, lettuce, pak-choi and leaf mustard were examined under various selenium treatments (0, 1, 5, 10, 25, 50, 100 mg $L^{-1}$). Seed germinations in cabbage, pak-choi and leaf mustard were significantly inhibited at high concentration of selenium treatment. However, seed germination in lettuce was not much inhibited. Growth characteristics, such as soot length, root length, fresh weight and chlorophyll contents, were not much decreased at 1 mg $L^{-1}$ of selenium and then significantly inhibited with the increase of selenium concentration at above 5 mg $L^{-1}$ in all four vegetables. The selenium content increased linearly with the increase of selenium concentration. At the range of 1 to 25 mg $L^{-1}$ of selenium treatment, selenium contents in vegetables were 0.11 to 1.15 of cabbage, 0.16 to 0.61 of lettuce, 0.13 to 1.31 of pak-choi and 0.14 to 1.13 mg $g^{-1}$dw of leaf mustard, respectively. These results showed that treatment of selenium with the range of 1 to 5 mg $L^{-1}$ could be used to produce the selenium enriched vegetable sprouts.

새싹채소의 종자발아와 생장에 미치는 셀레늄 농도 처리(삽입) 효과와 흡수특성을 구명하기 위하여, 대표적인 채소류인 배추, 상추, 청경채 및 을 이용하여 다양한 셀레늄 농도 (0, 1, 5, 10, 25, 50, 100 mg $L^{-1}$ 를 처리하였다. 종자발아는 배추, 청경채 및 갓에서 처리 농도가 증가함에 따라 억제되었지만, 상추의 경우 큰 영향을 받지 않았다. 싹의 생장에 미치는 셀레늄의 효과는 배추, 상추, 청경채 및 갓의 경우, 지상부 길이, 뿌리 길이, 생체중 및 엽록소 함량 등의 생육특성에 있어서 낮은 처리 농도 (1 mg $L^{-1}$)에서 오히려 약간의 생장 촉진 효과를 보이거나 거의 차이가 없었다. 5 mg $L^{-1}$ 이상의 농도 처리 시에는 농도가 높아짐에 따라 심각한 생육 억제 현상을 보였다. 식물체내의 셀레늄의 흡수 특성은 셀레늄을 각각 1${\sim}$25 mg $L^{-1}$ 처리 시 배추는 0.11${\sim}$1.15, 상추는 0.16${\sim}$0.61, 청경채는 0.13${\sim}$1.31 그리고 갓은 0.14${\sim}$1.13 mg $g^{-1}$dw 범위에서 셀레늄 처리농도가 높아짐에 따라 점진적으로 증가하였다. 따라서 본 연구의 결과에 의하여 1${\sim}$5 mg $L^{-1}$ 범위의 낮은 농도의 셀레늄 처리가 셀레늄 함유된 기능성 새싹채소의 생산을 위한 기초 자료로 활용 될 것으로 판단된다.

Keywords

References

  1. Greenwald, T. (1998) Is it good medicine? Time 30, 37-44
  2. Ellis, D. R. and Salt, D. E. (2003) Plants, selenium and human health. Cur. Opin. Plant Biol. 6, 273-279 https://doi.org/10.1016/S1369-5266(03)00030-X
  3. Combs, G. F. Jr. and Combs, S. B. (1986) The role of selenium in nutrition. Academic Press, Orlando, FL, USA
  4. Gunnar, G. N., Umesh, C. G., Michel, L. and Tuomas, W. (1985) Selenium in soil and plant and its importance in liverstock and human nutrition. Advanced in Agronomy 37, 397-460
  5. Comb, G. F. Jr (2001) Selenium in global food system. Br. J. Nutr. 86, 517-547
  6. Young, V. R. (1981) Selemium: A case for its essentially in man. New England J. Med. 304, 1228-1230 https://doi.org/10.1056/NEJM198105143042010
  7. Whanger, P. D. (2002) Selenocompounds in plants and animals and their biological significance. J. Am. Coll. Nutr. 21, 223-232 https://doi.org/10.1080/07315724.2002.10719214
  8. Clark, L. C., Combs, G. F. Jr., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., Davis, L. S., Glover, R. A., Graham, G. F., Gross, E. G., et al., (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. J. Am. Med. Assoc. 276, 1957-1963 https://doi.org/10.1001/jama.276.24.1957
  9. Reid, M., Duffield-Lillico, A. J., Garland, L., Turnbull, B. W., Clark, L. C. and Marshall, J. R. (2002) Selenium supplementation and lung cancer incidences: an update of the nutritional prevention cancer trial. Cancer Epidemiol Biomarkers Prev. 11, 1285-1291
  10. Sors, T. G., Ellis, D. R. and Salt, D. E. (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosyhthesis Research 86, 373-389 https://doi.org/10.1007/s11120-005-5222-9
  11. Yun, H. K., Kim, Y. C., Seo, T. C., Lee, S. G., Suh, H. D., Lee, J. G. and Lee, S. H. (2003) Effect of selenium source and concentrations on growth and quality of leafy lettuce and garland chrysanthemum in deep flow culture. J. Kor. Soc. Hort. Sci. 44, 447-450
  12. Yun, H. K., Seo, T. C., Park, D. K., Choi, K. Y. and Jang, Y. A. (2004) Effect of selenium source and concentrations on growth and quality of endive and pak-choi in deep flow culture. Kor. J. Hor. Sci. Technol. 22, 151-155
  13. Lee. C. K., Cho, K. C., Lee, J. H., Cho, J. Y., Seo, B. S. and Yang, W. M. (2005) Effects of selenium supplying methods on the growth and Se uptake of hydroponically grown tomato plants. J. Bio-Environ. Control. 14, 284-288
  14. Lee, M. J., Lee, G. P. and Park, K. W. (2001) Effects of selenium on growth and quality in hydroponically grown Korean Mint. J. Kor. Soc. Hort. Sci. 42, 483-486
  15. Han, M. J., Kim, S. U., Seo, D. C., Cheong, Y, H., Lee, D. J., Park, M. S., Rim, Y. S., Sohn, B. K., Heo, J. S. and Cho, J. S. (2007) Uptake properties of germanium to vegetable plants and its effects on seed germination and on early stage growth. Kor. J. Environ. Agric. 26, 217-222 https://doi.org/10.5338/KJEA.2007.26.3.217
  16. Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S. and Davison, A. W. (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Env. Exp. Bot. 32, 85–100 https://doi.org/10.1016/0098-8472(92)90034-Y
  17. Arnon, D. J. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Bela vulgaris. Plant Physiol. 24, 1–15 https://doi.org/10.1104/pp.24.1.1
  18. SAS Institute (1990) SAS User Guide, version 6.08. SAS Institute Inc. SAS Circle. Box 8000, Cary, NC 27515-800010
  19. Carvalho, K. M., Gallardo-Williams, M. T., Benson, R. and Martin, D. F. (2003) Effects of selenium supplementation on four agricultural crops. J. Agri. Food Chem. 51, 704-709 https://doi.org/10.1021/jf0258555
  20. Park, K. W., Lee, J. H. and Geyer, B. (1996) Effects of selenium concentrations in nutrient solution on the growth and contents of inorganic substances of chinese leaf cabbage. J. Kor. Soc. Hort. Sci. 37, 47-51
  21. Barak, P. and Goldman, I. L. (1997) Antagonistic relationship between selenite and sulfate uptake in onion (Allium cepa): Implications for production of organosulfur and organoselenium compounds in plants. J. Agric. Food Chem. 45, 1290-1294 https://doi.org/10.1021/jf960729k
  22. Lee, M. H. (2003) Selenium in Human Nutrition and Health. J. Korean Assoc. Cancer Prev. 8, 36-44

Cited by

  1. Effect of Vitamin C, Germanium Oxide and Selenium Treatment on the during Cultivation of Sprouts vol.24, pp.2, 2011, https://doi.org/10.9799/ksfan.2011.24.2.226
  2. Antioxidant activities and α-Glucosidase Inhibition Effects of Chicories Grown in Hydroponics Added with Cr3+or Selenium vol.29, pp.1, 2014, https://doi.org/10.13103/JFHS.2014.29.1.053
  3. Current Status of Registered Korean Patents Related to the Health Functional Food for Skin Care vol.25, pp.2, 2012, https://doi.org/10.9799/ksfan.2012.25.2.308
  4. In vitro culture of rare plant Bletilla striata using Jeju magma seawater vol.39, pp.4, 2012, https://doi.org/10.5010/JPB.2012.39.4.281