DOI QR코드

DOI QR Code

Effect of Vegetation Types on the Distribution of Soil Invertebrates

식생유형이 토양무척추동물 분포에 미치는 영향

  • Kim, Myung-Hyun (Department of Climate Change and Agroecology, National Academy of Agricultural Science, RDA) ;
  • Bang, Hea-Son (Department of Climate Change and Agroecology, National Academy of Agricultural Science, RDA) ;
  • Han, Min-Su (Department of Climate Change and Agroecology, National Academy of Agricultural Science, RDA) ;
  • Hong, Hey-Kyoung (Department of Climate Change and Agroecology, National Academy of Agricultural Science, RDA) ;
  • Na, Young-Eun (Department of Climate Change and Agroecology, National Academy of Agricultural Science, RDA) ;
  • Kang, Kee-Kyung (Department of Climate Change and Agroecology, National Academy of Agricultural Science, RDA) ;
  • Lee, Jeong-Taek (Department of Climate Change and Agroecology, National Academy of Agricultural Science, RDA) ;
  • Lee, Deog-Bae (Department of Climate Change and Agroecology, National Academy of Agricultural Science, RDA)
  • 김명현 (농촌진흥청 국립농업과학원) ;
  • 방혜선 (농촌진흥청 국립농업과학원) ;
  • 한민수 (농촌진흥청 국립농업과학원) ;
  • 홍혜경 (농촌진흥청 국립농업과학원) ;
  • 나영은 (농촌진흥청 국립농업과학원) ;
  • 강기경 (농촌진흥청 국립농업과학원) ;
  • 이정택 (농촌진흥청 국립농업과학원) ;
  • 이덕배 (농촌진흥청 국립농업과학원)
  • Published : 2009.06.30

Abstract

The aim of this study was to investigate whether differences in the distribution of soil invertebrates among different vegetation types (forest, reservoir, and crop land types) in rural area. A total of 18 orders and 137 species were collected by pitfall traps. Species numbers were the lowest (33 species) at the Chamaecyparis obtusa plantation (St. 6). On the forest sites, the individual number of Hymenoptera was the most abundant, and Acari and Coleoptera was the relatively more abundant than the other sites. On the reservoir sites (Salix chaenomeloides community), the individual number of Collembola was the most abundant, and Diptera was the relatively more abundant than the other sites. On the crop land sites, the individual numbers of Collembola, Hymenoptera, and Araneae were the relatively more abundant than the other orders. The density of Araneae was higher in the reservoir and crop land sites than in the forest sites. From a point of view of biodiversity, although the diversity index(H') was the highest in the mixed broad-leaved forest type (St. 2) with Quercus serrata and Q. acutissima, and the lowest in the upland levee of crop land(St. 11), there was no significant difference among the habitat or vegetation types. According to the community analysis, the soil invertebrates could be divided into 4 groups, the mixed broad-leaved forest type (A group), the plantation or pure forest type (B group), the reservoir type (C group), and the crop land type (D group).

전형적인 농촌지역에 발달해 있는 여러 가지 식생유형에서 함정트랩을 이용하여 토양무척추동물의 분포조사를 실시하였다. 그 결과, 채집된 토양무척추동물은 3문 6강 18목 82과 137종이었다. 출현종수는 편백이 밀식되어 있는 식재림 St. 6지점(33종)이 가장 낮았다. 목별 개체수 분포에서는 산림지역에서는 벌목이 많고, 진드기목과 딱정벌레목은 다른 지역보다 높게 나타났다. 저수지 주변 식생에서는 톡토기목이 높게 나타났고, 파리목은 다른 지역보다 높게 나타났다. 농경지에서는 거미목, 톡토기목, 벌목의 개체수가 많았다. 거미목의 경우에는 저수지와 농경지에서 월등이 높게 나타났다. 생물종다양성의 측면에서는 식생 및 서식지 유형별로 큰 차이를 나타내지 않았지만, 조사지점별로 졸참나무와 상수리나무가 혼생하는 산림지역 St. 2지점의 다양도지수가 가장 높았고, 농경지 밭둑인 St. 11이 가장 낮은 다양도지수를 나타냈다. 생물종다양성의 차이가 나타나지 않는 것에 반하여 토양무척추동물은 서식지 유형 및 식생유형별로 명확하게 4군(낙엽활엽수혼효림, 식재림 및 단순림, 저수지, 농경지)으로 구분되었다. 이러한 결과는 서식지유형별 및 식생유형에 따라서 그곳에 적응한 토양무척추동물들의 군집이 형성이 된다는 것을 의미하는 것이다.

Keywords

References

  1. UNEP 한국위원회 (2002) 생물다양성협약. UNEP Press, Seoul, Korea
  2. Blair, R.B. (1996) Land use and avian species diversity along an urban gradient. Ecol. Applic. 6, 506-519 https://doi.org/10.2307/2269387
  3. Laurance, W.F. and Laurance, S.G.W. (1996) Responses of five arboreal marsupials to recent selective logging in tropical Australia. Biotropica 28, 310-322 https://doi.org/10.2307/2389195
  4. Mason, D. (1996) Responses of Venezuelan understory birds to selective logging, enrichment strips, and vine cutting. Biotropica 28, 296-309 https://doi.org/10.2307/2389194
  5. Favila, M.E. and Halffter, G. (1997) The use of indicator groups for measuring biodiversity as related to community structure and function. Acta Zool. Mexi. 72, 1-25
  6. McGeoch, M.A. (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol. Re. 73, 181-201 https://doi.org/10.1017/S000632319700515X
  7. Kremen, C. Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F. and Sanjayan, M.A. (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conser. Biol. 7, 796-808 https://doi.org/10.1046/j.1523-1739.1993.740796.x
  8. Rosenberg, D.M., Danks, H.V. and Lehmkuhl, D.M. (1986) Importance of insects in environmental impact assessment. Environ. Manage. 10, 773-783 https://doi.org/10.1007/BF01867730
  9. Price, P.W. (1988) An overview of organismal interactions in ecosystems in evolutionary and ecological time. Agric. Ecosyst. Environ. 24, 369-377 https://doi.org/10.1016/0167-8809(88)90080-1
  10. Aoki, J. (1961) Observations on oribatid mite fauna in soils under two different vegetations, Quercus acutissima CARRUTH. and Pinus densiflora SIEB. et ZUCC. Jpn. J. Appl. Entomol. Zool. 5(2), 81-91 https://doi.org/10.1303/jjaez.5.81
  11. Pearse, A.S. (1946) Observations on the microfauna of the Duke forest. Ecol. Monogr. 16(2), 127-150 https://doi.org/10.2307/1943104
  12. Morikawa, K., Ohue, M. and Matsumoto, R. (1959) Observation on the structure of microanimal communities in soils with different flora. Jap. J. Ecol. 9(5), 189-193
  13. Aoki, J. (1962) Untersuchungen $\"{u}$ber die z$\"{o}$nosen der oribatiden in Nikko in beziehung zu pflanzendeckung und boden. I. Beschreibungen der pflanzendeckung, des bodens und der oribatiden im untersuchungsgebiete. Jap. J. Ecol. 12(5), 169-180
  14. Aoki, J. (1963) Untersuchungen $\"{u}$ber die z$\"{o}$nosen der oribatiden in Nikko in beziehung zu pflanzendeckung und boden. Ⅳ. Die pflanzendeckungen und die oribatidenz$\"{o}$nosen. Jap. J. Ecol. 13(4), 139-151
  15. Matsumoto, S. and Inoue, Y. (1987) Soil physicochemical properties and animal community in different vegetation at Tsurumi Park, Osaka. Mem. Fac. Agr. Kinki Univ. 20, 43-49
  16. Lindstrom, A. and Jaenson, T.G.T. (2003) Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in Southern Sweden. J. Med. Entomol. 40(4), 375-378 https://doi.org/10.1603/0022-2585-40.4.375
  17. Choi, B.M. and Park, K.S. (1991) Studies on the distribution of ants(Formicidea) in Korea(6) -The vegetation, the species composition and the colony density of ants in Mt. Namsan, Seoul- Korean J. Appl. Entomol. 30(1),65-79
  18. Kwak, J.S. and Kil, B.S. (1989) Soil microarthropods and the Kwangyang experiment plantation. 3. Relationship between soil oribatid mite and vegetation. Korean J. Ecol. 12(3), 191-202
  19. Braun-Blanquet, J. (1964) Pflanzensoniologie. Springer-Verlag. 3rd ed., Vienna. New York
  20. Shannon, C.E. and Wiener, W. (1949) The mathematical theory of communication. Univ. Illinois Press, Urbana
  21. Margalef, R. (1972) Homage to Evelyn Hutchinson, or why is there an upper limit to diversity. Trans. Connect. Acad. Arts Sci. 44, 211-235
  22. Pielou, E.C. (1966) The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131-144 https://doi.org/10.1016/0022-5193(66)90013-0
  23. Simpson, E.H. (1949) Measurement of diversity. Nature 163, 688 https://doi.org/10.1038/163688a0
  24. Oh, K.I, Cho, H.D, An, K.W, Jang, S.K, Chung, J.C., and Kim, C.S. (2001) A study on distribution of soil microarthropods in Pinus rigida plantations following strip-cutting. Jour. Korean For. Soc. 90(3), 257-265

Cited by

  1. The Vegetation, Soil Characteristics, and Soil Microarthropods of Maebongsan Urban Forest in Cheongju-si, Korea vol.19, pp.6, 2016, https://doi.org/10.13087/kosert.2016.19.6.1
  2. Design Strategies for Ecological Restoration Using System Dynamics - Focused on 2015 Miryang-si Jayeon Madang Development Project - vol.43, pp.6, 2015, https://doi.org/10.9715/KILA.2015.43.6.086