References
- Kitts D, Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Design 9: 1309-1323 (2003) https://doi.org/10.2174/1381612033454883
- Kovacs-Nolan J, Phillips M, Mine Y. Advances in the value of eggs and egg components for human health. J. Agr. Food Chem. 53: 8421-8431 (2005) https://doi.org/10.1021/jf050964f
- Pihlanto A, Korhonen H. Bioactive peptides and proteins. Adv. Food Nutr. Res. 47: 175-276 (2003) https://doi.org/10.1016/S1043-4526(03)47004-6
- Guimont C, Marchall E, Girardet JM, Linden G. Biologically active factors in bovine milk and dairy byproducts: Influence on cell culture. Crit. Rev. Food Sci. 37: 393-410 (1997) https://doi.org/10.1080/10408399709527780
- Ahn DU, Lee SH, Singam H, Lee EJ, Kim JC. Sequential separation of main components from chicken egg yolk. Food Sci. Biotechnol. 15: 189-195 (2006)
- Lee EY, Woo GJ, Par J. Separation of antimicrobial hen egg white lysozyme using ultrafilatration. Food Sci. Biotechnol. 12: 371-375 (2003)
- Anton M, Nau F, Nys Y. Bioactive egg components and their potential uses. Worlds Poultry Sci. J. 62: 429-438 (2006) https://doi.org/10.1017/S004393390600105X
- Korhonen H, Pihlanto A. Food-derived bioactive peptidesopportunities for designing future foods. Curr. Pharm. Design 9: 1297-1308 (2003) https://doi.org/10.2174/1381612033454892
- Vercruysse L, Van Camp J, Smagghe G. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: A review. J. Agr. Food Chem. 53: 8106-8115 (2005) https://doi.org/10.1021/jf0508908
- Jiang B, Mine Y. Preparation of novel functional oligophosphopeptides from hen yolk phosvitin. J. Agr. Food Chem. 48: 990-994 (2000) https://doi.org/10.1021/jf990600l
- Watanabe K, Tsuge Y, Shimoyamada M, Ogama N, Ebina T. Antitumor effects of pronase-treated fragments, glycopeptides, from ovomucin in hen egg white in a double grafted tumor system. J. Agr. Food Chem. 46: 3033-3038 (1998) https://doi.org/10.1021/jf9800615
- Miguel M, Aleixandre MA, Ramos M, Lopez-Fandino R. Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. J. Agr. Food Chem. 54: 726-731 (2006) https://doi.org/10.1021/jf051101p
- Miguel M, Aleixandre A. Antihypertensive peptides derived from egg proteins. J. Nutr. 136: 1457-1460 (2006) https://doi.org/10.1093/jn/136.6.1457
- Xu M, Shangguan X, Wang W, Chen J. Antioxidative activity of hen egg ovalbumin hydrolysates. Asia Pac. J. Clin. Nutr. 16: 178-182 (2007)
- Ibrahim HR, Sugimoto Y, Aoki T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochim. Biophy. Acta 1523: 196-205 (2000) https://doi.org/10.1016/S0304-4165(00)00122-7
- Mine Y, Ma F, Lauriau S. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agr. Food Chem. 52: 1088-1094 (2004) https://doi.org/10.1021/jf0345752
- Biziulevicius GA. Where do the immunostimulatory effects of oral proteolytic enzymes ('systemic enzyme therapy') come from? Microbial proteolysis as a possible starting point. Med. Hypotheses 67: 1386-1388 (2006) https://doi.org/10.1016/j.mehy.2006.05.051
- Shimizu M. Food-derived peptides and intestinal functions. Biofactors 21: 43-47 (2004) https://doi.org/10.1002/biof.552210109
- Jolles P, Jolles J. What's new in lysozyme research? Mol. Cell. Biochem. 63: 165-189 (1984) https://doi.org/10.1007/BF00285225
- Ogundele MO. A novel anti-inflammatory activity of lysozyme:modulation of serum complement activation. Mediat. Inflamm. 7: 363-365 (1998) https://doi.org/10.1080/09629359890893
- Gordon LI, Douglas SD, Kay NE, Yamada O, Osserman EF, Jacob HS. Modulation of neutrophil function by lysozyme. Potential negative feedback system of inflammation. J. Clin. Invest. 64: 226-232 (1979) https://doi.org/10.1172/JCI109443
- Haas M, Moalenaar F, Meijer DKF, De Jong PE, De Zeeuw D. Renal targeting of a non-steroidal anti-inflammatory drug: Effects on renal prostaglandin synthesis in the rats. Clin. Sci. 95: 603-609 (1998) https://doi.org/10.1042/CS19980188
- Hung CR. Effect of lysozyme chloride on betel quid chewing aggravated gastric oxidative stress and hemorrhagic ulcer in diabetic rats. World J. Gastroenterol. 11: 5853-5858 (2005)
- Sato M, Oe H, Nakano M, Kawasaki H, Hirayama C. A random contolled study of the prophylactic effect of lysozyme chloride on post-transfusion hepatitis. Hepato-Gastroenterol. 28: 135-138 (1981)
- Huang Y, Li N, Liboni K, Neu J. Glutamin decreases lipopolysaccharide-induced IL-8 production in Caco-2 cells through a non-NF-kB p50 mechanism. Cytokine 22: 77-83 (2003) https://doi.org/10.1016/S1043-4666(03)00115-7
- SAS. The SAS System for Windows (Release 9.1). SAS Institute, Inc., Cary, NC, USA (2002-2003)
- Ohno N, Morrison DC. Lipopolysaccharide interactions with lysozyme differentially affect lipopolysaccharide immunostimulatory. Eur. J. Biochem. 186: 629-636 (1989) https://doi.org/10.1111/j.1432-1033.1989.tb15253.x
- Takada K, Ohno N, Yadomae T. Lysozyme regulates LPS-induced interleukin-6 release in mice. Circ. Shock 44: 169-174 (1994)
- Takada K, Ohno N, Yadomae T. Detoxification of lipopolysaccharide (LPS) by egg white lysozyme. FEMS Immunol. Med. Mic. 9: 255-264 (1994) https://doi.org/10.1111/j.1574-695X.1994.tb00360.x
- Takada K, Ohno N, Yadomae T. Binding of lysozyme to lipopolysaccharide suppresses tumor necrosis factor production in vivo. Infect. Immun. 62: 1171-1175 (1994)
- Brandenburg K, Koch MHJ, Seydel U. Biophysical characterization of lysozyme binding to LPS Re and lipid A. Eur. J. Biochem. 258: 686-695 (1998) https://doi.org/10.1046/j.1432-1327.1998.2580686.x
- Ohno N, Morrison DC. Lipopolysaccharide interactions with lysozyme. Binding of lipopolysaccharide to lysozyme and inhibition of lysozyme enzymatic activity. J. Biol. Chem. 264: 4434-4441 (1989)
- Takenaka A, Takenaka O, Mizota T, Shibata K, Inada Y. Sodium trichloro- acetate as a denaturation reagent for proteins. J. Biochem. 70: 63-73 (1971) https://doi.org/10.1093/oxfordjournals.jbchem.a129627
- Augusto LA, Li J, Synguelakis M, Johansson J, Chaby R. Structural basis for interactions between lung surfactant protein C and bacterial lipopolysaccharide. J. Biol. Chem. 28: 23484-23492 (2002) https://doi.org/10.1074/jbc.M111925200
- Kanayama N, Kajiwara Y, Goto J, Maradny EL, Maehara K, Andou K, Terao T. Inactivation of interleukin-8 by aminopeptidase N(CD13). J. Leukocyte Biol. 57: 129-134 (1995) https://doi.org/10.1002/jlb.57.1.129
- Leavell KJ, Peterson MW, Gross TJ. Human neutrophil elastase abolishes interleukin-8 chemotactic activity. J. Leukocyte Biol. 61: 361-366 (1997) https://doi.org/10.1002/jlb.61.3.361
- Yoshikawa M, Fujita H, Matoba N, Takenaka Y, Yamamoto T, Yamauchi R, Tsuruki H, Takahata K. Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors 12: 143-146 (2000) https://doi.org/10.1002/biof.5520120122
- Radons J, Biewusch U, Grassel S, Geuze HJ, Hasilik A. Distinctive inhibition of the lysosomal targeting of lysozyme and cathepsin D by drugs affecting pH gradients and protein kinase C. Biochem. J. 302: 581-586 (1994) https://doi.org/10.1042/bj3020581