DOI QR코드

DOI QR Code

Effect of Indirect Oxidation on the Design of Sewage/wastewater Reuse System with an Electrolysis Reactor

전기분해 반응조의 간접산화 효과가 하.폐수 재활용 시스템 설계에 미치는 영향

  • Shin, Choon-Hwan (Department of Energy & Environmental Engineering, Dongseo University)
  • 신춘환 (동서대학교 에너지.환경공학과)
  • Published : 2009.06.30

Abstract

In this paper, we investigated the effect of an indirect oxidation zone in an electrolysis reactor that used Ti/$IrO_2$ as the anode and SUS 316L as the cathode. Based on our preliminary results, the electrolysis reactor was operated with pole plate interval of 6 mm, current density 1.0 $A/dm^2L$ and electrolyte concentration 15%. The removal efficiency, COD (chemical oxygen demand), was additionally increased by 55% and 12.5${\sim}$15.0% in the direct and indirect oxidation zones, respectively. The removal efficiencies of T-N (total nitrogen) and T-P (total phosphorus) were found to be 88% and 75%, respectively. It was shown that the additional effect of the indirect oxidation zone on the removal was nearly negligible. Also, as the removal of COD,T-N and T-P took place during the initial2${\sim}$5 days of reaction, it was concluded that there was no need to extend the retention time of the electrolysis reactor.

Ti/$IrO_2$ 를 양극으로 SUS 316L 을 음극으로 사용한 전기분해 반응조에 간접산화조를 설치하여 간접산화 효과를 제시함으로써 하폐수 재활용 시스템의 설계에 미치는 영향을 고찰하였다. 전기분해 반응조의 운전조건은 극판 간격, 전류 밀도, 전해질 농도에 대한 영향을 조사하여 극판 간격 6 mm, 전류 밀도 1.0 $A/dm^2$ L, 전해질 농도 15%로 설정하였다. 산화에 의한 제거효율은 유기물은 COD로서 직접산화조에서 55%, 간접산화조에서 12.5${\sim}$15.0%의 추가 분해가 일어나고 있으며 T-N (전체 질소량), T-P(전체 인량)는 직접산화조에서 각각 88%, 75%의 제거효율을 나타내고 있으나 COD제거와는 달리 간접산화조의 추가 제거 효과는 거의 없는 것으로 판명되었다. 또한 COD, T-N, T-P의 제거는 2-5일의 반응초기에 일어나고 있기 때문에 전기 분해 반응조의 체류시간을 크게 설계할 필요는 없다는 결론을 얻을 수 있었다.

Keywords

References

  1. Andre, S., "Electrochemical Treatment of Industrial Organic Effluent," Chimia, 16(3), 23-27 (1995).
  2. Trasitti, S., "Electrocatalysis: Understanding the Success of DSA(R)," Electrochim. Acta, 45(15-16), 2377-2385 (2000). https://doi.org/10.1016/S0013-4686(00)00338-8
  3. Shin, C. H., and Bae, J. S., "Operational Performance of an Electrolytic Reactor in Configurating a Graywater Treatment System for Sewage/wastewater Reuse," J. Ind. Eng. Chem., 13(7), 1091-1097 (2007).
  4. Chiang, L. C, Chang, J. E., and Wen, T. C, "Indirect Oxidation Effect in Electrochemical Oxidation Treatment of Landfill Leachate," Water Res., 5(9), 671-678 (1995-A).
  5. Simond, O., Schaller, V., and Comnillis, C, "Theoretical Model for the Anodic Oxidation of Organic Metal Oxide Elecrodes," Electrochim. Acta, 42(13/14), 2009-2012 (1997). https://doi.org/10.1016/S0013-4686(97)85475-8
  6. Chen, G., "Electrochemical Technology in Wastewater Treatment," J. Sep. Purift. Tech., 38(11), 11-41 (2004). https://doi.org/10.1016/j.seppur.2003.10.006
  7. Chen, G., Chen, X., and Yue, P. L., "Electrochemical Behavior of Novel Ti/IrO2-Sb2O5-SnO2 Anode," J. Phys. Chem. B., 106, 4364-4369 (2002). https://doi.org/10.1021/jp013547o
  8. Cossu, R, Polcaro, A. M., Lavagnolo, M. C, Mascica, M., Palmas, S., and Renoldi, F., "Electrochemical Treatment of Landfill Leachate: Oxidation at Ti/PbO2 and Ti/SnO2 Anodes," Environ. Sci. Tech., 32, 570-3573 (1998).
  9. Coast, C. R, Botta, C. M. R., Espindola, E. L. G., and Oliva, P., "Electrochemical Treatment of Tannery Wastewater Using DSA Electrode," J. Hazard. Mater., 153, 616-627 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.005
  10. Gattrell, M., and Kirk, D. W., "The Electrochemical Oxidation of Aqueous Phenol at a Glassy Carbon Electrode," Can. J. Chem. Eng. 12(4), 997-1003 (1990).
  11. Kelsall, G. H., "Hypolychlorite Electro-generation. I . A Parametric Study of a Parallel Plate Electrode Cell," J. Appl. Electrochem., 4(9), 177-186 (1984).
  12. Mark, J., Tetreault, A., Benedict, H., Christopher, K., and Edwin, F., "Biological Phosphorus Removal: A Technology Evaluation," J. WPCF, 11(5), 823-837 (1986).
  13. Kim, D., and Kim, Y., "Electrochemical Characteristics of the Sulfonated Polysulfone Cation-exchanger Membrane at Rotating Disk Electrode," J. Ind. Eng. Chem., 11(4), 579-565 (2005).
  14. Song, H. Y., Kondrikov N. B., and Kuryavy V. G., "Preparation and Characterization of Manganese Dioxide Electrodes for Highly Selective Oxygen Evolution During Diluted Chloride Solution Electrolysis," J. Ind. Eng. Chem.. 13(4), 545-551 (2007).
  15. Kwon, S. W., Shim, J. B., and Kim, E. H., "Electrolysis of Actinide Chloride Using a Solid Cathode Surrounded by a Ceramic Container," J. Ind. Eng. Chem., 12(5), 802-808 (2006).