DOI QR코드

DOI QR Code

Rheological and Thermal Properties of PLA Nano-composite Modified by Reactive Extrusion

반응압출 공정으로 개질된 PLA 나노복합체의 유변학적 및 열적 물성

  • Kang, Gyeoung-Soo (School of Display and Chemical Engineering, Yeungnam University) ;
  • Kim, Bong-Shik (School of Display and Chemical Engineering, Yeungnam University) ;
  • Shin, Boo-Young (School of Display and Chemical Engineering, Yeungnam University)
  • 강경수 (영남대학교 디스플레이화공학부) ;
  • 김봉식 (영남대학교 디스플레이화공학부) ;
  • 신부영 (영남대학교 디스플레이화공학부)
  • Published : 2009.06.30

Abstract

In this study, poly(lactic acid) (PLA) was modified by reactive extrusion with a functional monomer GMA(glycidyl methacrylate), MMT(montmorillonite), and initiator to enhance the melt strength. Each modified PLA was prepared with different amounts of GMA and MMT and was characterized by measuring thennal- and melt-viscoelastic properties. The degree of dispersion of MMT was measured by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The glass transition temperature($T_g$) of modified PLA-GMA-MMT nanocomposite decreased with increasing GMA content, but was a little affected by the amount of MMT. Surface analysis showed that the nanocomposite became more intercalated than exfoliated as the amount of MMT increases. The complex viscosity and storage modulus of the nano-composite were greatly increased by addition of MMT.

본 연구에서는 폴리락틱산(PLA)의 용융강도를 향상시키기 위하여 몬모릴로나이트(MMT), 기능성 단량체인 글리시딜 메타크릴레이트(GMA)와 반응개시제를 함유한 PLA를 이축압출기로 개질한 후 열적 특성과 및 유변학적 특성을 조사하였으며, X선 회절장치(XRD) 및 투과전자현미경(TEM) 사진을 이용하여 MMT의 분산도를 측정하였다. 이 나노복합체의 $T_g$는 GMA 함량이 증가하면 감소하는 경향을 보였으나, MMT의 양에는 크게 영향을 받지 않았다. 또한 표면분석에 의해 MMT의 양이 증가할수록 박리형(exfoliation) 보다는 삽입형(intercalation)에 가까운 나노복합체가 형성된 것을 확인하였다. 복합점도 및 저장탄성률은 MMT의 첨가에 의해 크게 증가되었다.

Keywords

References

  1. Narayan, R., "Biobased & Biodegradable Polymer Materials: Rationale, Drivers, and Technology Examples," in Degradable Polymers and Materials: Principles and Practice, ACS Symposium Series 939, American Chemical Society, Washingon, DC, Chapter 5 (2006).
  2. Auras, R., Harte, B., and Selke, S., "An Overview of Polylactides as Packaging Materials," Macromol. Biosci, 4(9), 835-864 (2004). https://doi.org/10.1002/mabi.200400043
  3. Lee, J. R., Chun, S. W., and Kang, H. J., "Crystallization Behavior of Poly(lactic acid)/Poly($\epsilon$-caprolactone) Blends," Polymer(Korea), 27(4), 285-292 (2003).
  4. Carlson, D., Dubois, P., and Narayan, R., "Free radical branching of polylactide by reactive extrusion," Polym. Eng. Sci, 38(2), 311-321 (1998). https://doi.org/10.1002/pen.10192
  5. Ray, S. S., and Okamoto, M., "Biodegradable Polylactide and Its Nanocomposites: Opening a New Dimension for Plastic and Composites," Macromol. Rapid. Commun., 24(14), 815-840 (2003). https://doi.org/10.1002/marc.200300008
  6. Di, Y., Iannace, S., Maio, E. D., and Nicolais, L., "Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing," J. Polym. Set, Part B : 43(6), 689-698 (2005). https://doi.org/10.1002/polb.20366
  7. Di, Y., Iannace, S., Maio, E. D., and Nicolaice, L., "Reactively Modified Poly(lactic acid): Properties and Foam Processing," Macromol. Mater. Eng., 290(11), 1083-1090 (2005). https://doi.org/10.1002/mame.200500115
  8. Kim, E. S., Kim, B. C, and Kim, S. H., "Structural Effect of Linear and Star-shaped Poly(L-lactic acid) on Physical Properties" J. Polym. Sci., B: Polym. Phys., 42(6), 939-946 (2004). https://doi.org/10.1002/polb.10685
  9. Gupta, M. C. and Deshmukh, V. G., "Radiation effects on Poly(lactic acid)," Polymer, 24(7), 827-830 (1983). https://doi.org/10.1016/0032-3861(83)90198-2
  10. Di, Y., Iannace, S., Maio, E. D., and Nicolaice, L., "Al(OH)3-and A10(OH)-based Cocatalysts for Metallocene Complexes in Alkene Polymerization Reactions," J. Polymer Sci., 43(6), 689-698 (2005). https://doi.org/10.1002/polb.20366
  11. Chae, H. G., Kim, B. C, Im, S. S., and Han, Y. K., "Effect of Molecular Weight and Branch Structure on the Crystallization and Rheological Properties of Poly(butylene adipate)," Polym. Eng. Sci., 41(7), 1133-1139 (2001). https://doi.org/10.1002/pen.10814
  12. Park, J. W., and Im, S. S., "A Study of the Effect of PP-g-MA and SEBS-g-MA on the Mechanical and Morphological Properties of Polypropylene/nylon 6 Blends," Polym. Eng. Sci., 40(12), 2539-2550 (2000). https://doi.org/10.1002/pen.11384
  13. Zilg, C, Mulhaupt, R., and Finter, J., "Morphology and Toughness/stiffness Balance of Nanocomposites based upon Anhydride-cured Epoxy Resins and Layered Silicates," Macromolecular Chem. & Phys., 200(3), 661-670 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4
  14. Messersmith, P. H., and Giannelis, E. P., "Synthesis and Barrier Properties of Poly(-caprolactone)-layered Silicate Nanocomposites," J. Polym. Sci., Part A:Polym. Chem., 33(7), 1047-1057 (1995). https://doi.org/10.1002/pola.1995.080330707
  15. Lyu, S. G., Park, D.Y, Bae, K. S., and Sur, G. S., "Preparation of Exfoliated PCL/Clay Nanocomposite and Its Characterization," Polymer(Korea)., 25(3), 421-426 (2001).
  16. Meister, J. J., "Polymer Modification: Principles, Techniques, and Applications," Marcell Dekker, Inc., New York, 2000.
  17. Zhang, G; Yan, D. "Crystallization Kinetics and Melting Behavior of Nylon 10,10 in Nylon 10,10-montmorillonite Nanocomposites," J. Appl. Polym. Sci., 88(9), 2181-2188 (2003). https://doi.org/10.1002/app.11879
  18. Jang, W. Y., Hong, K. H., Cho, B. H., Jang, S. H., Lee, S. I., Kim, B. S., and Shin, B. Y., "Thermal and Rheological Properties, and Biodegradability of Chemically Modified PLA by Reactive Extrusion," Polymer (Korea) 32(2), 116-124 (2008).
  19. Lim, S. T., Lee, C. H., Choi, H. J., and Jhon, M. S, "Solidlike Transition of Melt-intercalated Biodegradable Polymer/clay Nanocomposites," J. Polym. Sci, B: 41(17), 2052-2061 (2003). https://doi.org/10.1002/polb.10570
  20. Yang, H. H., Han, C. D., and Kim, J. K, "Rheology of Miscible Blends of Poly(methyl methacrylate) with Poly(styrene-co-acrylonitrile) and with Poly(vinylidene fluoride)," Polymer., 35(7), 1503-1511 (1994). https://doi.org/10.1016/0032-3861(94)90351-4
  21. Han, C. D., and Jhon, M. S., "Correlations of the First Normal Stress Difference with Shear Stress and of the Storage Modulus with Loss Modulus for Homopolymers," J. Appl. Polym. Sci, 32(3), 3809-3840 (1986). https://doi.org/10.1002/app.1986.070320302
  22. Sodergard, A., Niemi, M., Selin, J. F., and Nasman, H., "Changes in Peroxide Melt-Modified Poly(L-lactide)," Ind. Eng. Chem. Res., 34(4), 1203-1207 (1995). https://doi.org/10.1021/ie00043a024