Fermentative Hydrogen Production under Various $SO_4^{2-}$ Concentration using Anaerobic Mixed Microflora

혐기 혼합균주에서 황산염 농도변화에 따른 수소 발효 특성

  • Published : 2009.06.30

Abstract

The effect of varying sulfate concentration on continuous fermentative hydrogen production was studied using enriched mixed microflora in continuously fed reactor. Glucose was used as a model substrate for carbohydrates, and hydraulic retention time (HRT) was maintained at 1, 0.5, 0.25 day, respectively. Sulfate concentration was 0${\sim}$20,000 mg/L and the operating pH was maintained at 5.5. The experimental results indicate that hydrogen production is not affected by high sulfate concentration and shorter HRT of 0.25 day enhance hydrogen production. At HRT 1, 0.5, 0.25 day, the hydrogen production rate and hydrogen yield were 2.6, 4.6, 9.4 L/day, and 2.0, 1.8, 1.6 mol $H_2$/mol glucose, respectively. Residual sulfate content was 96${\sim}$98, 95${\sim}$97, and 94${\sim}$97% at HRT 1, 0.5, 0.25 day which show that no sulfate reduction occurred in the reactor during the experiments. Results of Fluorescence In Situ Hybridization (FISH) may indicate the presence of HPB (hydrogen producing bacteria) under all experimental conditions. However, SRB (sulfate reducing bacteria) were not found.

황산염의 농도변화에 따른 연속 혐기성 수소 발효에 미치는 영향을 고찰하기 위해서 혼합균주를 사용한 완전 혼합형 반응조를 운전하였다. 기질은 글루코오스를 사용하였고, 수리학적 체류시간은 1, 0.5, 0.25 일로 각각 고정하였다. 황산염 농도는 0${\sim}$20,000 mg/L로 단계별 증가시켰고 pH 5.5로 운전하였다. 실험 결과 높은 황산염 농도에 관계없이 수소가 발생하였고, HRT 0.25일로 짧아짐에 따라 수소 발생이 높게 나타났다. HRT 1, 0.5, 0.25일 각 조건별 수소 생성량과 수소 수율은 2.9, 4.6, 9.4 L/day, 2.0, 1.8, 1.6 mol $H_2$/mol glucose로 나타났으며, 잔존 황산염 96${\sim}$98, 95${\sim}$97 94${\sim}$97%로 나타나 황산염 환원이 발생하지 않았다. FISH 결과 모든 조건에서 수소생성균의 분포는 나타났지만 황산염환원균의 분포는 나타나지 않았다.

Keywords

References

  1. Kim, C.-G. and Kang, S.-H., "Effect of Temperature on Production of Hydrogen in Anaerobic Fermentation," J. Korean Society of Water and Wastewater, 21(4), 467-475(2007)
  2. Dincer, I., "Technical environmental and exergetic aspects of hydrogen energy systems," Int. J Hydrogen Energy, 27, 265-285(2002) https://doi.org/10.1016/S0360-3199(01)00119-7
  3. Benemann, "J. Hydrogen Biotechnology : progress and prospects," Nature Biotechnology, 14, 1101-1103(1996) https://doi.org/10.1038/nbt0996-1101
  4. Okamoto, M., Miyahara, T., Mizuno, O., and Noike, T., "Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes," Water Sci. Technol., 41(3), 25-32(2000)
  5. Hawkes, F. R., Dinsdale., Hawkers, D. L., and Hussy, I., "Sustainable fermentative hydrogen production: challenges for process potimisation," Int. J Hydrogen Energy, 27, 1339-1347(2002) https://doi.org/10.1016/S0360-3199(02)00090-3
  6. Lin, C. Y. and Lay, C. H., "Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora," Int. J Hydrogen Energy, 29(1), 41-45(2004) https://doi.org/10.1016/S0360-3199(03)00083-1
  7. Lin, C. Y. and Lay, C. H., "Effects of carbonate and phosphate concentrations hydrogen production using anaerobic sewage microflora," Int. J. Hydrogen Energy, 29(3), 275 -281(2004) https://doi.org/10.1016/j.ijhydene.2003.07.002
  8. Chen, C. C., Lin, C. Y., and Chang, J. S., "Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate," Appl. MicrobioI. Biotechnol., 57, 56-64(2001)
  9. Jalal, S., Farideh, G., and Parisa, M., "The effect of influent COD and upward flow velocity on the behaviour of sulphate-reducing bacteria," Proc. Biochem., 40, 2305-2310(2005) https://doi.org/10.1016/j.procbio.2004.09.005
  10. Esposito, G., Weijma, J., Pirozzi, F., and Lens, P. N. L., "Effect of the sludge retention time on H2 utilization in a sulphate reducing gas lift reactor," Proc. Biochem., 39, 491-498(2003) https://doi.org/10.1016/S0032-9592(03)00131-6
  11. Li, Y. Y, Lam,' S., and Fang, H. H. P., "Interactions between methanogenic, sulfate-reducing and syntrophic acetogenic bacteria in the anaerobic degradation of benzoate," Water Res., 30(7), 1555-1562(1996) https://doi.org/10.1016/0043-1354(95)00316-9
  12. Mizuno, O., Li, Y. Y, Noike, T., "The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion," Water Res., 32(5), 1626-1634(1998) https://doi.org/10.1016/S0043-1354(97)00372-2
  13. Lin, C. Y. and Chen, H. P., "Sulfate effect on fermen tative hydrogen production using anaerobic mixed microflora," Int. J. Hydrogen Energy, 31(7), 953-960(2006) https://doi.org/10.1016/j.ijhydene.2005.07.009
  14. Chen, C.-C., Chen, H.-P., Wu, J.-H., Lin, C.-Y., "Fermentative hydrogen production at high sulfate concentration," Int. J. Hydrogen Energy, 33, 1573-1578(2007)
  15. APHA, AWWA, and WPCF, "Standard Methods for the Examination of Water and Wastewater," 17th edition, American Public Health Association, Washington, D. C.(1989)
  16. Anderson, G. K., Donnelly, T., and Mckeown, K. J., "Identification and control of inhibition in anaerobic treatment of industrial wastewaters," Proc. Biochem., 17, 28-32(1982)
  17. Mah, R. A., Xun, L. Y., Boone, D. R., Ahring, B., Smith, P. H., and Wilkie, A, "Methanogenesis from propionate in sludge and enrichment systems," Microbilogy and Biochemistry of Strict Anaerobes Involved in Interspecies Transfer, pp. 99-111(1990)
  18. Mizuno, O., Li, Y. Y., and Noike, T., "Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate," Water Sci. Technol., 30, 45-54(1994)
  19. Amann, R. I., Fuch, B. M., and Behrens, S., "The identification of microorganisms by fluorescence in situ hybridization," Curr. Opin. Microbiol., 12(1), 231-236(2001)
  20. Aubert, C., Brugna, M., Dolla, A, Bruschi, M., GiudiciOrticoni, M.-T., "A sequential electron transfer from hydrogenases to cytochromes in sulfate-reducing bacteria," Biochim. Biophy. Acta, 1476, 85-92(2000) https://doi.org/10.1016/S0167-4838(99)00221-6
  21. Yu, H., Zhu, Z., Hu, W., and Zhang H., "Hydrogen Production from Rice Winery Wastewater in an Upflow Anaerobic reactor by using mixed anaerobic culture," Int. J. Hydrogen Energy, 27, 1359-1365(2002) https://doi.org/10.1016/S0360-3199(02)00073-3
  22. Lin, C. Y. and Chang, R. C., "Hydrogen production during the anaerobic acidogenic conversion of glucose," J. Chem. Technol. Biotechnol., 74, 498-500(1999) https://doi.org/10.1002/(SICI)1097-4660(199906)74:6<498::AID-JCTB67>3.0.CO;2-D
  23. Ueno, Y., Otsuka, S., and Morimoto, M., "Biological production of hydrogen from cellulose by natural anaerobic microflora," J. Ferment. Bioeng., 79(4), 395-397 (1995) https://doi.org/10.1016/0922-338X(95)94005-C
  24. Lay, J. J., "Modeling and optimization of anaerobic digested sludge converting stach to hydrogen," Biotechnol. Bioeng., 68(3), 269-278(2000) https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
  25. 정태영, 차기철, "슬러지의 혐기성 소화에 있어서 황산염 농도에 따른 황산염환원균과 메탄생성균의 역할," 2004 춘계학술연구발표회, 대한환경공학회, pp. 448-455(2004)
  26. Fang, H. H. P. and Liu, H., "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82, 87-93(2002) https://doi.org/10.1016/S0960-8524(01)00110-9
  27. Chen, C.-C. and Lin, C.-Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7, 695-699(2003) https://doi.org/10.1016/S1093-0191(02)00035-7
  28. Han, S.-K. and Shin, H.-S., "Biohydrogen production by anaerobic fermentation of food waste," Int. J. Hydrogen Energy, 29, 569-577(2004) https://doi.org/10.1016/j.ijhydene.2003.09.001
  29. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y., "Microbial community in anaerobic hydrogen producing microflora enriched from sludge compost," Appl. Microbiol. Biotechnol., 57, 555-562(2001) https://doi.org/10.1007/s002530100806
  30. Devereux, R., Kane, M. D., Winfrey, J., and Stahl, D. A, "Genus-and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria," Syst. Appl. Microbiol., 15, 601-609(1992) https://doi.org/10.1016/S0723-2020(11)80122-0