Anti-mutagenic and Anti-septic Effects of $\beta$-glucan from Aureobasidium pullulans SM-2001

흑효모유래 $\beta$-glucan의 패혈증 치료효과 및 항돌연변이 활성 평가

  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University)
  • 구세광 (대구한의대학교 한의과대학 해부조직학교실)
  • Received : 2009.10.18
  • Accepted : 2009.12.13
  • Published : 2009.12.31

Abstract

Anti-mutagenic and anti-septic effects of $\beta$-1,3/1,6-glucan from Aureobasidium pullulans SM-2001 were evaluated on the on the cyclophosphamide (CPA)-cecal ligation puncture (CLP) and CPA-treated mice. To induce immunosuppression and mutagenicity, 150 and 110 mg/kg of CPA were single intraperitoneally injected at 3 or 1 day before CLP or initial $\beta$-glucan administration. In CLP animals, the cecum was mobilized and ligated below the ileocecal valve, punctured through both surfaces twice with a 22-gauge needle. 125 mg/kg of $\beta$-glucan were dissolved in saline and subcutaneously or orally administered in a volume of 10 ml/kg (of body weight), 4 times, 12 hrs intervals from 6 hrs after CLP or 1 day after second dose of CPA. After treatment of $\beta$-glucan, the mortalities were observed in CPA-CLP model, and the appearance of a micronucleus is used as an index for genotoxic potential in CPA model. As results of CPA-CLP sepsis, all animals (9/9, 100%) in CPA-CLP control were dead within 2 days after CLP. In addition, increase of the number of bone marrow MNPCEs indicated mutagenicity were also observed by treatment of CPA. However, $\beta$-glucan treatment effectively inhibited the mortalities in CPA-CLP, and it also reduced the CPA treatment-related mutagenicity, respectively. These results indicated that $\beta$-glucan has effective anti-septic and anti-mutagenic effects and can be used as an agents for treating sepsis and mutagenicity related to high-dose chemotherapy or radiotherapy. However, further studies should be conducted to observe more detail action mechanisms of it's anti-septic and anti-mutagenic effects.

Keywords

References

  1. Hoyert, D.L., Kochanek. K.D., Murphy, S.L. Deaths: final data for 1997. Natl. Vital. Stat. Rep., 1999;47:1-104.
  2. Yan, J.J., Jung, J.S., Lee, J.E., Lee, J., Huh, S.O., Kim, H.S., Jung, K.C., Cho, J.Y., Nam, J.S., Suh, H.W., Kim, Y.H., Song, D.K. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat. Med., 2004;10:161-167. https://doi.org/10.1038/nm989
  3. Parkman, R., Weinberg, K.I. Immunological reconstitution following bone marrow trans-plantation. Immunol. Rev., 1997;157:73-78. https://doi.org/10.1111/j.1600-065X.1997.tb00975.x
  4. Guillaume, T., Rubinstein, D.B., Symann, M. Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood, 1998;92:1471-1490.
  5. Tzianabos, A.O. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin. Microbiol. Rev., 2000;13:523- 533. https://doi.org/10.1128/CMR.13.4.523-533.2000
  6. Estrada, A., Yun, C.H., Van Kessel, A., Li, B., Hauta, S., Laarveld, B. Immunomodulatory activities of oat beta-glucan in vitro and in vivo. Microbiol. Immunol., 1997;41:991-998.
  7. Di Luzio, N.R., Williams, D.L., McNamee, R.B., Edwards, B.F., Kitahama, A. Comparative tumor-inhibitory and anti-bacterial activity of soluble and particulate glucan. Int. J. Cancer, 1979;24: 773-779. https://doi.org/10.1002/ijc.2910240613
  8. Lotzova, E., Gutterman, J.U. Effect of glucan on natural killer (NK) cells: further comparison between NK cell and bone marrow effector cell activities. J. Immunol., 1979;123:607-611.
  9. Hofer, M., Pospisil, M. Glucan as stimulator of hematopoiesis in normal and gamma-irradiated mice. A survey of the authors' results. Int. J. Immunopharmacol., 1997;19:607-609. https://doi.org/10.1016/S0192-0561(97)00057-X
  10. Di Luzio, N.R., Williams, D.L. Protective effect of glucan against systemic Staphylococcus aureus septicemia in normal and leukemic mice. Infect. Immun., 1978;20:804-810.
  11. Browder, I.W., Williams, D.L., Kitahama, A., Di Luzio, N.R. Modification of post-operative C. albicans sepsis by glucan immunostimulation. Int. J. Immunopharmacol., 1984;6:19-26. https://doi.org/10.1016/0192-0561(84)90030-4
  12. Lee, J.N., Lee, D.Y., Ji, I.H., Kim, G.E., Kim, H.N., Sohn, J., Kim, S., Kim, C.W. Purification of soluble beta-glucan with immune-enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem., 2001;65:837-841. https://doi.org/10.1271/bbb.65.837
  13. Chirigos, M.A., Stylos, W.A., Schultz, R.M., Fullen, J.R. Chemical and biological adjuvants capable of potentiating tumor cell vaccine. Cancer Res., 1978;38:1085-1091.
  14. Holbrook, T.W., Cook, J.A., Parker, B.W. Immunization against Leishmania donovani: glucan as an adjuvant with killed promastigotes. Am. J. Trop. Med. Hyg., 1981;30:762-768.
  15. Benach, J.L., Habicht, G.S., Holbrook, T.W., Cook, J.A. Glucan as an adjuvant for a murine Babesia microti immunization trial. Infect. Immun., 1982;35:947-951.
  16. Mackin, W.M., Brunkr-Reese, D., Gu, Y., Crotty, C., Fisette, L. Enhanced microbial activities of human peripheral blood monocytes and neutrophils (PMN) after pre-treatment with PGG-glucan (BetafectinTM). FASEB J., 1994;8:A216.
  17. Poutsiaka, D.D., Mengozzi, M., Vannier, E., Sinha, B., Dinarello, C.A. Cross-linking of the beta-glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin-1 production. Blood, 1993;82:3695-3700.
  18. Masihi, K.N., Madaj, K., Hintelmann, H., Gast, G., Kaneko, Y. Down-regulation of tumor necrosis factor-alpha, moderate reduction of interleukin-1beta, but not interleukin-6 or interleukin-10, by glucan immunomodulators curdlan sulfate and lentinan. Int. J. Immunopharmacol., 1997;19:463-468. https://doi.org/10.1016/S0192-0561(97)00056-8
  19. Soltys, J., Quinn, M.T. Modulation of endotoxinand enterotoxin-induced cytokine release by in vivo treatment with beta-(1,6)-branched beta-(1,3)-glucan. Infect. Immun., 1999;67:244-252.
  20. Seo, H.P., Kim, J.M., Shin, H.D., Kim, T.K., Chang, H.J., Park, B.R., Lee, J.W. Production of -1,3/1,6-glucan by Aureobasidium pullulans SM-2001. Korean J. Bitechnol. Bioeng., 2002;17: 376-380.
  21. Shin, H.D., Yang, K.J., Park, B.R., Son, C.W., Jang, H.J., Ku, S.K. Antiosteoporotic effect of Polycan, beta-glucan from Aureobasidium, in ovariectomized osteoporotic mice. Nutrition, 2007;23:853-860. https://doi.org/10.1016/j.nut.2007.08.011
  22. Kim, H.D., Cho, H.R., Moon, S.B., Shin, H.D., Yang, K.J., Park, B.R., Jang, H.J., Lim, L.S., Lee, H.S., Ku, S.K. Effect of Exopolymers from Aureobasidum pullulans on formalin-induced chronic paw inflammation in mice. J. Microbiol. Biotechnol., 2006;16:1954-1960.
  23. Kim, H.D., Cho, H.R., Moon, S.B., Shin, H.D., Yang, K.J., Park, B.R., Jang, H.J., Lim, L.S., Lee, H.S., Ku, S.K. Effects of $\beta$-glucan from Aureobasidum pullulanson acute inflammation in mice. Arch. Pharm. Res., 2008;30:323-328.
  24. Lee, H.S., Cho, H.R., Moon, S.B., Shin, H.D., Yang, K.J., Park, B.R., Jang, H.J., Kim, L.S., Ku, S.K. Effect of $\beta$-glucan from Aureobsidium pullulans on rat rib fracture healing. Lab. Anim. Res., 2008;24:39-44.
  25. Hu, Q., Xu, J., Chen, L. Antimutagenicity of selenium-enriched rice on mice exposure to cyclophosphamide and mitomycin C. Cancer Lett., 2005;220:29-35. https://doi.org/10.1016/j.canlet.2004.06.041
  26. Liu, F., Ooi, V.E., Chang, S.T. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci., 1997;60:763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  27. Krizkova, L., Durackova, Z., Sandula, J., Slamenova, D., Sasinkova, V., Sivonova, M., Krajcovic, J. Fungal beta-(1-3)-D-glucan derivatives exhibit high antioxidative and antimutagenic activity in vitro. Anticancer Res., 2003;23:2751-2756.
  28. Schimid W. The Micronucleus Test. Mutat. Res., 1975;31:9-15. https://doi.org/10.1016/0165-1161(75)90058-8
  29. Kilbey, B.J., Legator, M., Nichols, W., Ramel, C. Handbook of Mutagenicity Test Procedures. Baltimor:Elsevier, 1984.
  30. Urbaschek, R., Urbaschek, B. Tumor necrosis factor and interleukin 1 as mediators of endotoxin-induced beneficial effects. Rev. Infect. Dis., 1987;9:S607-615. https://doi.org/10.1093/clinids/9.Supplement_5.S607
  31. Ghiselli, R., Cirioni, O., Giacometti, A., Mocchegiani, F., Orlando, F., Silvestri, C., Licci, A., Della Vittoria, A., Scalise, G., Saba, V. The cathelicidin-derived tritrpticin enhances the efficacy of ertapenem in experimental rat models of septic shock. Shock, 2006;26:195-200. https://doi.org/10.1097/01.shk.0000225407.24479.3f
  32. Wirtz, S., Tubbe, I., Galle, P.R., Schild, H.J., Birkenbach, M., Blumberg, R.S., Neurath, M.F. Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J. Exp. Med., 2006;203:1875-1881. https://doi.org/10.1084/jem.20060471
  33. Wichterman, K.A., Baue, A.E., Chaudry, I.H. Sepsis and septic shock: a review of laboratory models and a proposal. J. Surg. Res., 1980;29:189-201. https://doi.org/10.1016/0022-4804(80)90037-2
  34. Zantl, N., Uebe, A., Neumann, B., Wagner, H., Siewert, J.R., Holzmann, B., Heidecke, C.D., Pfeffer, K. Essential role of $\alpha$-interferon in survival of colon ascendens stent peritonitis, a novel murine model of abdominal sepsis. Infect. Immun., 1998;66:2300-2309.
  35. Maier, S., Emmanuilidis, K., Entleutner, M., Zantl, N., Werner, M., Pfeffer, K., Heidecke, C.D. Massive chemokine transcription in acute renal failure due to polymicrobial sepsis. Shock, 2000;14:187-192. https://doi.org/10.1097/00024382-200014020-00019
  36. Emmanuilidis, K., Weighardt, H., Maier, S., Gerauer, K., Fleischmann, T., Zheng, X.X., Hancock, W.W., Holzmann, B., Heidecke, C.D. Critical role of Kupffer cellderived IL-10 for host defense in septic peritonitis. J. Immunol., 2001;167:3919-3927.
  37. Qin, C.G., Huang, K.X., Xu, H.B. Effect of Misgurnus anguillicaudatus polysaccharide on immune responses of splenocytes in mice. Acta Pharmacol. Sin., 2002;23:534-538.
  38. Perry, M.C. The Chemotherapy Source Book. Baltimore : Williams & Wilkins, 1996.
  39. Angulo, I., de las Heras, F.G., Garcia-Bustos, J.F., Gargallo, D., Munoz-Fernandez, M.A., Fresno, M. Nitric oxide-producing C D 1 1 b ( + ) L y - 6 G ( G r - 1 ) ( + ) CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide- treated mice: implications for T-cell responses in immunosuppressed mice. Blood, 2000;95:212-220.
  40. Miyauchi, A., Hiramine, C., Tanaka, S., Hojo, K. Differential effects of a single dose of cyclophosphamide on T cell subsets of the thymus and spleen in mice: flow cytofluorometry analysis. Tohoku J. Exp. Med., 1990;162:147-167. https://doi.org/10.1620/tjem.162.147
  41. El-Bayoumy, K. The protective role of selenium on genetic damage and on cancer. Mutat. Res., 2001;475:123-139. https://doi.org/10.1016/S0027-5107(01)00075-6
  42. Hosseinimehr, S.J., Karami, M. Citrus extract modulates genotoxicity induced by cyclophosphamide in mice bone marrow cells. J. Pharm. Pharmacol., 2005;57:505-509. https://doi.org/10.1211/0022357055849
  43. Renner, H.W. In vivo effects of single or combined dietary antimutagens on mutageninduced chromosomal aberrations. Mutat. Res., 1990;244:185-188. https://doi.org/10.1016/0165-7992(90)90070-Z
  44. Khaidakov, M., Bishop, M.E., Manjanatha, M.G., Lyn-Cook, L.E., Desai, V.G., Chen, J.J., Aidoo, A. Influence of dietary antioxidants on the mutagenicity of 7,12-dimethylbenz[a]-anthracene and bleomycin in female rats. Mutat. Res., 2001;480: 163-170.