A Potential Role of Oxytocin and Acupuncture in Drug Addiction

옥시토신의 약물중독에서 역할과 침(鍼) 관련성

  • Yang, Chae-Ha (Department of Physiology, College of Oriental Medicine, Daeggu Haany University) ;
  • Choi, Seong-Hun (Department of Anatomy and Histology, College of Oriental Medicine, Daeggu Haany University)
  • 양재하 (대구한의대학교 한의과대학 생리학교실) ;
  • 최성훈 (대구한의대학교 한의과대학 해부학교실)
  • Received : 2009.10.30
  • Accepted : 2009.12.22
  • Published : 2009.12.31

Abstract

Oxytocin(OT), classically known to stimulate labour and milk ejection, contributes to play an important role in a wide range of behavioral effects including drug addiction. An increasing body of evidence suggests that OT ameliorates acute and long-term effects of commonly used drugs by means of interacting with the mesolimbic dopamine system. Mesolimbic dopamine system is thought to play a major role in the reinforcing properties of drug abuse. Oxytocin receptors in the nucleus accumbens(NAc) and ventral tegmental area(VTA) have been implicated in the regulation of reinforcing effects in abused drugs. In the same way acupuncture may attenuate the reinforcing effects of abused drugs in the NAc and VTA. We have an interest in similar liaison between the substrates of acupuncture and drug addiction that may involve OT. Here, we described the possibility that acupuncture modulates the reinforcing and sensitizing properties of abused drugs in the dopaminergic system via the regulation of activities in the oxytocinergic system. The elements in this paper are summarized as follows : neuroanatomical studies of oxytocinergic innervation and distribution of oxytocin receptors; experiments related to the methamphetamine, cocaine, morphine and ethanol; experiments related to the oxytocin and acupuncture.

Keywords

References

  1. Gimpl G, Fahrenholz F. he oxytocin receptor system: structure, function, and regulation, Physiol Rev., 2001;81:629–683.
  2. Summerlee AJ. Extracellular recordings from oxytocin neurones during the expulsive phase of birth in unanaesthetized rats, J Physiol, 1981;321:1-9.
  3. Paisley AC, Summerlee AJ. Activity of putative oxytocin neurones during reflex milk ejection in conscious rabbits, J Physiol, 1984;347:465-78.
  4. Dale HH. The action of extracts of the pituitary body, Biochem. J, 1909;4:427-447.
  5. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG. he Synthesis of Oxytocin, J. Am. Chem. Soc., 1954;76(12):3115–3121.
  6. Caldwell JD, Drago F, Prange Jr AJ, Pedersen CA. A comparison of grooming behavior potencies of neurohypophysial nonapeptides, Regul Pept., 1986;14:261-71. https://doi.org/10.1016/0167-0115(86)90009-1
  7. Windle RJ, Shanks N, Lightman SL, Ingram CD, Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats, Endocrinology, 1997;138:2829-2834. https://doi.org/10.1210/en.138.7.2829
  8. Neumann ID. Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo–ituitary–drenal axis, Prog Brain Res., 2002;139:147–62.
  9. Verbalis JG, Blackburn RE, Olson BR, Stricker EM. Central oxytocin inhibition of food and salt ingestion: a mechanism for intake regulation of solute homeostasis, Regul Pept., 1993;45:149-154. https://doi.org/10.1016/0167-0115(93)90198-H
  10. Ferguson JN, Aldag JM, Insel TR, Young LJ. Oxytocin in the medial amygdala is essential for social recognition in the mouse, J Neurosci., 2001;21:8278-8285.
  11. Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, Insel TR. Infant vocalization, adult aggression and fear behavior of an oxytocin null mutant mouse, Horm Behav. 2000;37:145-155. https://doi.org/10.1006/hbeh.1999.1566
  12. Petersson M, Alster P, Lundeberg T, Uvn-is-Moberg K. Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats, Neuroscience Letters, 1996;212:87-90. https://doi.org/10.1016/0304-3940(96)12773-7
  13. Feuerstein G, Zerbe RL, Faden AI. Central cardiovascular effects of oxytocin, oxytocin and vasopressin in conscious rats, J Pharmacol Exp Ther, 1984;228:348-353.
  14. Pedersen CA, Ascher JA, Monroe YL, Prange Jr AJ. Oxytocin induces maternal behavior in virgin female rats, Science, 1982;216:648–50.
  15. Storm EE, Tecott LH. Social circuits: peptidergic regulation of mammalian social behavior, Neuron, 2005;47:483–486.
  16. Melis MR, Melis T, Cocco C, Succu S, Sanna F, Pillolla G, et al. Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats, Eur J Neurosci., 2007;26:1026–1035.
  17. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in humans. Nature. 2005;435(7042):673-6. https://doi.org/10.1038/nature03701
  18. Cassoni P, Sapino A, Marrocco T, Chini B, Bussolati G. Oxytocin and oxytocin receptors in cancer cells and proliferation, J Neuroendocrinol, 2004;16(4):362-364. https://doi.org/10.1111/j.0953-8194.2004.01165.x
  19. Kovas GL, Sarnyai Z, Szabo G. Oxytocin and addiction: a review, Psychoneuroendocrinology,1998;23(8):945-962. https://doi.org/10.1016/S0306-4530(98)00064-X
  20. McGregor IS, Callaghan PD, Hunt GE. From ultrasocial to antisocial: a role for oxytocin in the acute reinforcing effects and long-term adverse consequences of drug use?, Br J Pharmacol, 2008;154(2):358-368.
  21. Yang CH, Lee BH, Sohn SH. A possible mechanism underlying the effectiveness of acupuncture in the treatment of drug addiction, Evid Based Complement Alternat Med., 2008;5(3):257-266. https://doi.org/10.1093/ecam/nem081
  22. Yoon SS, Kwon YK, Kim MR, Shim I, Kim KJ, Lee MH, et al. Acupuncture-mediated inhibition of ethanol-induced dopamine release in the rat nucleus accumbens through the GABAB receptor, Neurosci Lett., 2004;369:234–238.
  23. Kronenberg HM, Melmed S, Polonsky KS, Larsen PR. Williams Textbook of Endocrinology, Philadelphia:Elsevier, 2008:88-94.
  24. Wang Z, Zhou L, Hulihan TJ, Insel TR. Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study, J Comp Neurol, 1996;366(4):726-37. https://doi.org/10.1002/(SICI)1096-9861(19960318)366:4<726::AID-CNE11>3.0.CO;2-D
  25. Rosen GJ, de Vries GJ, Goldman SL, Goldman BD, Forger NG. Distribution of oxytocin in the brain of a eusocial roden, Neuroscience, 2008;155(3):809–817.
  26. Hatton GI. Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neuronhypophysial system, Prog Neurobiol, 1990;34:437-503. https://doi.org/10.1016/0301-0082(90)90017-B
  27. Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication, Front Neuroen docrinol, 2004;25:150–176.
  28. Hermes ML, Buijs RM, Masson-Peet M, Peet P. Oxytocinergic innervation of the brain of the garden dormouse(Eliomys quercinus L.), J Comp Neurol, 1988;273(2):252-62. https://doi.org/10.1002/cne.902730209
  29. Sawchenko PE, Swanson LW. Immunohi stochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat, J Comp Neurol, 1982;205:260–272.
  30. Sawchenko PE, Swanson LW. Relationship of oxytocin pathways to the control of neuroendocrine and autonomic functions. In: Amico JA, Robinson AG. (Eds.). Oxytocin Clinical and Laboratory Studies, Amsterdam:Elsevier, 1985;87–104.
  31. Swanson, McKellar. The distribution of oxytocin-and neurophysin-stained fibers in the spinal cord of the rat and monkey, J Comp Neurol, 1979;188(1):87-106. https://doi.org/10.1002/cne.901880108
  32. Kimura T, Tanizawa O, Mori K, Brownstein MJ, and Okayama H. Structure and expression of a human oxytocin receptor, Nature, 1992;356:526-529. https://doi.org/10.1038/356526a0
  33. Yoshimura R, Kiyama H, Kimura T, Araki T, Maeno H, Tanizawa O, Tohyama M. Localization of oxytocin receptor messenger ribonucleic acid in the rat brain, Endocrinology, 1993;133: 1239-1246. https://doi.org/10.1210/en.133.3.1239
  34. Vaccari C, Lolait SJ, Ostrowski NL. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain, Endocrinology, 1998;139:5015–5033.
  35. Ross HE, Freeman SM, Spiegel LL, Ren X, Terwilliger EF, Young LJ. Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles, J Neurosci., 2009;29(5):1312-8. https://doi.org/10.1523/JNEUROSCI.5039-08.2009
  36. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction, Brain Research, 1993;18:247–91.
  37. Kelly PH, Seviour PW, Iversen SD. Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum, Brain Res., 1975;94:507-22. https://doi.org/10.1016/0006-8993(75)90233-4
  38. Qi J, Yang JY, Song M, Li Y, Wang F, Wu CF. Inhibition by oxytocin of methampheta mine-induced hyperactivity related to dopamine turnover in the mesolimbic region in mice, Naunyn Schmiedebergs Arch Pharmacol, 2008;376(6):441-8. https://doi.org/10.1007/s00210-007-0245-8
  39. Qi J, Yang JY, Wang F, Zhao YN, Song M, Wu CF. Effects of oxytocin on methamphetamine-induced conditioned place preference and the possible role of glutamatergic neurotransmission in the medial prefrontal cortex of mice in reinstatement, Neuropharmacology, 2009 Apr;56(5):856-865. https://doi.org/10.1016/j.neuropharm.2009.01.010
  40. Carson DS, Cornish JL, Guastella AJ, Hunt GE, McGregor IS. Oxytocin decreases metham phetamine self-administration, methamphetamine hyperactivity, and relapse to methamphe tamine-seeking behaviour in rats, Neurophar macology, 2010;58(1):38-43.
  41. Volkow ND, Wang GJ, ischman MW, Foltin RW, Fowler JS, Abumrad NN, Vitkun S, Logan J, Gatley SJ, Pappas N, Hitzemann R, Shea CE. Relationship between subjective effects of cocaine and dopamine transporter occupancy, Nature, 1997;386(6627):827-30. https://doi.org/10.1038/386827a0
  42. Kovacs GL, Sarnyai Z, Babarczy E, Szabo G, Telegdy G. The role of oxytocin-dopamine interactions in cocaine-induced locomotor hyperactivity, Neuropharmacology, 1990;29:365–8.
  43. Sarnyai Z, Szabo G, Kovacs GL, Telegdy G. Oxytocin attenuates the cocaine-induced exploratory hyperactivity in mice, NeuroReport, 1990;1:200–202.
  44. Sarnyai Z, Babarczy E, Krivan M, Szabo G, Kovacs GL, Barth T, Telegdy G. Selective attenuation of cocaine-induced stereotyped behaviour by oxytocin: putative role of basal forebrain target sites, Neuropeptides, 1991;19:51–56.
  45. Sarnyai Z, Biro E, Babarczy E, Vecsernyes M, Laczi F, Szabo G, Krivan M, Kovacs GL, Telegdy G. Oxytocin modulates behavioural adaptation to repeated treatment with cocaine in rats, Neuropharmacology, 1992;31(6):593-598. https://doi.org/10.1016/0028-3908(92)90192-R
  46. Sarnyai Z, Szabo G, Kovacs GL, Telegdy G. Opposite actions of oxytocin and vasopressin in the development of cocaine-induced behavioral sensitization in mice, Pharmacol Biochem Behav, 1992;43:491–94.
  47. Sim, LJ, Morris M. Activation of c-fos in PVN oxytocin neurons exposed to cocaine and dopamine, Society for Neuroscience Abstracts, 1992;18:346.
  48. Sarnyai Z, Vecsernyes M, Laczi F, Biro E, Szabo G, Kovacs GL. Effects of cocaine on the contents of neurohypophyseal hormones in the plasma and in different brain structures in rats, Neuropeptides, 1992;23(1):27-31. https://doi.org/10.1016/0143-4179(92)90006-I
  49. Kovacs GL, Szontagh L, Balaspiri L, Hdoi K, Bohus P, Telegdy G. On the mode of action of an oxytocin derivative(Z-Pro-D-Leu) on morphine-dependence in mice, Neuropharma cology, 1981;20(7):647-51. https://doi.org/10.1016/0028-3908(81)90111-8
  50. Kovacs GL, Izbeki F, Horvath Z, Telegdy G. Effects of oxytocin and a derivative (Z-prolyl-D-leucine) on morphine tolerance /withdrawal are mediated by the limbic system, Behav Brain Res, 1984;14(1):1-8. https://doi.org/10.1016/0166-4328(84)90014-7
  51. Kovacs GL, Telegdy G. Endorphin tolerance is inhibited by oxytocin, Pharmacol Biochem Behav, 1987;26:57–0.
  52. Kovacs GL, Borthaiser Z, Telegdy G. Oxytocin reduces intravenous heroin self-administration in heroin-tolerant rats, Life Sciences, 1985;37:17-26. https://doi.org/10.1016/0024-3205(85)90620-4
  53. Kovacs GL, Sarnyai Z, Izbeki F, Szabo G, Telegdy G, Bart, T, Jost K, Brtnik F. Effects of oxytocin-related peptides on rapid morphine tolerance: opposite actions by oxytocin and its receptor antagonists, J Pharmacol Exp Ther, 1987;241:569–574.
  54. Ibragimov R, Kovacs GL, Szabo G, Telegdy G. Microinjection of oxytocin into limbic-mesolimbic brain structures disrupts heroin self-admini stration behavior: a receptor mediated event?, Life Sciences 1987;41:1264-1271.
  55. van Heuven-Nolsen D, De Kloet ER, Versteeg DH. Oxytocin affects utilization of noradrenaline in distinct limbic-forebrain regions of the rat brain, Neuropharmacology, 1984;23(12A):1373-7. https://doi.org/10.1016/0028-3908(84)90075-3
  56. Kovacs GL, Faludi M, Falkay G, Telegdy G. Peripheral oxytocin treatment modulates central dopamine transmission in the mouse limbic structures, Neurochemical International, 1986;9:481-485. https://doi.org/10.1016/0197-0186(86)90138-5
  57. Szabo G, Kovacs GL, Szeeli S,Telegdy G. The effects of neurohypophyseal hormones on tolerance to the hypothermic effect of ethanol, Alcohol, 1985;2:567–74.
  58. Szabo G, Kovacs GL, Telegdy G, Nurohy pophyseal peptides and ethanol tolerance and dependence, Frontiers in Hormone Research, 1987;15:128–37.
  59. Szabo G, Kovacs GL, Telegdy G, Brain monoamines are involved in mediating the action of neurohypophyseal peptide hormones on ethanol tolerance, Acta Physiol Hung, 1988;71(3):459-66.
  60. Szabo G, Kovacs GL, Telegdy G, Effects of neurohypophyseal peptide hormones on alcohol dependence and withdrawal, Alcohol and Alcoho lism, 1987;22:71–4.
  61. Shwartz M, Saitz R, Mulvey K, Brannigan P, The value of acupuncture detoxification programs in a substance abuse treatment system, J Subst Abuse Treat, 1999;17:305–2.
  62. D'lberto AJ, Auricular acupuncture in the treatment of cocaine/ crack abuse: A review of the efficacy, the use of the National Acupuncture Detoxification Association protocol, and the selection of sham points, Journal of Alternative and Complementary Medicine, 2004;10:985–1000.
  63. 최성훈, 이봉효, 박인식, 최난희, 김광중, 장은영, 구세광, 송익수, 양재하, 흰쥐의 급성 메스암페타민 투여에 대한 鍼의 효과, 大韓鍼灸學會誌, 2009;26(1):39-47.
  64. 류승준, 강형원, 류영수, 백서 뇌측핵에서 도파민 분비에 대한 침의 효과, 대한침구학회지, 2003;20(4):24-41.
  65. Kim JH, Chung JY, Kwon YK, Kim KJ, Yang CH, Hahm DH et al, Acupuncture reduces alcohol withdrawal syndrome and c-Fos expression in rat brain, Am J Chinese Med, 2005;35:887–6.
  66. 이학인, 김미려, 김소영, 심인섭, 한상원, 진창배, 양재하, Acupuncture attenuates cocaine-induced dopamine release in the nucleus accumbens and voluntary cocaine intake in rats, 대한침구학회지, 2003;20(4):170-9.
  67. Liu S, Zhou W, Liu H, Yang G, Zhao W, Electroacupuncture attenuates morphine withd rawal signs and c-Fos expression in the central nucleus of the amygdala in freely moving rats, Brain Res, 2005;1044:155–3.
  68. Zhao RJ, Yoon SS, Lee BH, Kwon YK, Kim KJ, Shim I, Choi KH, Kim MR, Golden GT, Yang CH, Acupuncture normalizes the release of accumbal dopamine during the withdrawal period and after the ethanol challenge in chronic ethanol-treated rats, Neurosci Lett, 2006;395(1):28-32. https://doi.org/10.1016/j.neulet.2005.10.043
  69. Lee BH, Zhao RJ, Moon JY, Yoon SS, Kim JA, An H, Kwon YK, Hwang M, Choi SH, Shim I, Kim BH, Yang CH, Differential involvement of GABA system in mediating behavioral and neurochemical effect of acupuncture in ethanol-withdrawn rats, Neurosci Lett, 2008;443(3):213-7. https://doi.org/10.1016/j.neulet.2008.07.069
  70. Yang J, Lin BC, Hypothalamic paraventricular nucleus plays a role in acupuncture analgesia through the central nervous system in the rat, Acupunct Electrother Res, 1992;17:209–20.
  71. Yang J, Yang Y, Chen J, Liu W, Wang C, Lin B, Effect of oxytocin on acupuncture analgesia in the rat, Neuropeptides, 2007;41:285–92.
  72. Song CY, Liu WY, Yang J, Lin BC, Zhu HN, The role of central oxytocin in electroacupuncture analgesia, Sheng Li Xue Bao, 1990;42(2):169-74.
  73. Grewen KM, Girdler SS, Amico J, Light KC. Effects of partner support on resting oxytocin, cortisol, norepinephrine, and blood pressure before and after warm partner contact, Psychosom Med, 2005;67:531–538.
  74. Winslow JT, Insel TR, The social deficits of the oxytocin knockout mouse, Neuropeptides, 2002;36:221–229.
  75. Guastella AJ, Mitchell PB, Dadds MR, Oxytocin increases gaze to the eye region of human faces, Biol Psychiatry, 2008;63:3–5.758.
  76. Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L et al, Oxytocin increases retention of social cognition in autism, Biol Psychiatry, 2007;61:498–503.
  77. 姜孝信, 東洋醫學槪論, 서울:고문사, 1977:35-40.
  78. Butovsky E, Juknat A, Elbaz J, Shabat-Simon M, Eilam R, Zangen A, et al, Chronic exposure to Delta9-tetrahydrocannabinol downregulates oxy tocin and oxytocin-associated neurophysin in specific brain areas, Mol Cell Neurosci, 2006;31:795–804.