DOI QR코드

DOI QR Code

Surface Morphology and Reflectance of Calcite Filler in Glass Composites

Calcite 필러를 함유한 유리 복합체의 표면형상과 반사율

  • 전재승 (인하대학교 신소재공학부) ;
  • 황성진 (인하대학교 신소재공학부) ;
  • 안지환 (한국지질자원연구원 자원활용소재연구부) ;
  • 김형순 (인하대학교 신소재공학부)
  • Published : 2009.08.27

Abstract

Reflection properties, such as specular reflection and diffuse reflection, are very important optical properties for the reflector, which has high reflectance in the display and architecture industry. Calcite is lowcost, nontoxic, and stable over a wide temperature range. Therefore, it is one of the most widely using fillers in many industries and has some advantages over titania as a filler to improve reflectance. However, optical properties, especially those of ceramic-filled composites, have not been analyzed. We studied the reflectance of calcite composites with their surface roughness. The reflectance of the composites was determined using a UV-visible spectrometer. The surface morphology and the micro-structure of the composites were investigated by atomic force microscope. The reflectance of the composites was improved by increasing the content of calcite in the calcite-frit composite. The reflectance is related with the surface roughness in the composites. However, the reflectance depends on the calcite contents in materials with similar surface roughness.

Keywords

References

  1. J. K. Lee, J. Y. Won, S. J. Hwang and H. S. Kim, J. Wuhan Univ. Tech. Mater. Sci. Ed., 22, 779 (2007)
  2. E. G. Chong, S. J. Hwang, W. K. Sung and H. S. Kim, J. Appl. Ceramic Tech., 6(2), 295 (2009) https://doi.org/10.1111/j.1744-7402.2008.02273.x
  3. H. Suehrcke, E. L. Peterson and N. Selby, Energy and Buildings, 40, 2224, (2008) https://doi.org/10.1016/j.enbuild.2008.06.015
  4. Y. Sun, J. Optic. Soc. Am. A, 24(3), 724 (2007) https://doi.org/10.1364/JOSAA.24.000724
  5. L. B. Wolff, J. Optic. Soc. Am. A, 11(11), 2956 (1994) https://doi.org/10.1364/JOSAA.11.002956
  6. H. E. Bennett and J. P. Porteus, J. Optic. Soc. Am., 51(2), 123 (1961) https://doi.org/10.1364/JOSA.51.000123
  7. C. Pakjamsai and J. Suwanprateeb, J. Appl. Polym. Sci., 78, 1947 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1947::AID-APP140>3.0.CO;2-D
  8. E. Sancaktar and E. Walker, J. Applied Polym. Sci., 94, 1986 (2004) https://doi.org/10.1002/app.21102
  9. D. Jin, X. Yu, L. Yue and L. Wang, Mat. Chem. Phys., 115, 418 (2009) https://doi.org/10.1016/j.matchemphys.2008.12.013
  10. A. Karena and M. A. Villar, Optic. Mat., 17, 437 (2001) https://doi.org/10.1016/S0925-3467(01)00063-5
  11. M. Ferraris and E. Verne, J. Euro. Ceram. Soc., 16, 421 (1996) https://doi.org/10.1016/0955-2219(95)00114-X
  12. M. Eberstein, S. Reinsch and R. Muller, J. Euro. Ceram. Soc., 29, 2469 (2009) https://doi.org/10.1016/j.jeurceramsoc.2009.02.007
  13. J. S. Jun, M. R. Cha and H. S. Kim, Kor. J. Mater. Res., 14(9), 670 (2004) https://doi.org/10.3740/MRSK.2004.14.9.670
  14. H. Scholze and M. Lakin, Glass : Nature, Structure, and Properties, p. 214, Springer, New york (1991)
  15. H. H. Shin, S. G. Kim, J. S. Park, H. S. Jung, K. S. Hong, and H. S. Kim, J. Mater. Res., 21(7), 1753 (2006) https://doi.org/10.1557/jmr.2006.0205
  16. J. P. Liu, H. F. Yau, Z. Ye, C. G. Kuo and B. Ke, Optik, 118, 147 (2007) https://doi.org/10.1016/j.ijleo.2006.01.020