DOI QR코드

DOI QR Code

Analysis of the Seasonal Change of the Proximate Composition and Taste Components in the Conger Eels (Conger myriaster)

붕장어(Conger myriaster)의 일반성분 및 맛 성분의 계절별 변화 분석

  • 류근영 (조선대학교 식품영양학과) ;
  • 심성례 (조선대학교 식품영양학과) ;
  • 김원 (조선대학교 식품영양학과) ;
  • 정민석 (조선대학교 식품영양학과) ;
  • 황인민 (조선대학교 식품영양학과) ;
  • 김준형 (조선대학교 식품영양학과) ;
  • 홍철희 (순천청암대학 호텔외식조리과) ;
  • 정찬희 (백석문화대학 관광일본어) ;
  • 김경수 (조선대학교 식품영양학과)
  • Published : 2009.08.31

Abstract

Conger eel (Conger myriaster) is used as a well-being food in the foodservice industry in Korea. We analyzed not only the proximate composition but also the taste components affecting conger eel, which are fatty acids, nucleotides, amino acids, etc. Concerning the composition, the crude lipid was the lowest in summer at 3.2%, which is considered due to spawning period. The major fatty acids were $C_{16:0},\;C_{16:1},\;C_{18:0},\;C_{18:1},\;C_{20:5},\;and\;C_{22:6}$. The $C_{18:1}$ content was the highest among the fatty acids and the content varied between 36.76 and 45.11% by season. Seasonal change in the content of poly-unsaturated fatty acids was increased from spring to winter in conger eel. Among the nucleotides, the contents of IMP (3.617$\sim$5.524 $\mu$mol/g) and Hx (0.913$\sim$2.238 $\mu$mol/g), which is closely related to taste, and the concentrations of IMP and Hx were the highest (7.219 $\mu$mol/g) in winter, and HxR (0.625$\sim$1.652 $\mu$mol/g) was higher than ATP (0.058$\sim$0.083 $\mu$mol/g), ADP (0.145$\sim$0.161 $\mu$mol/g), and AMP (0.166$\sim$0.179 $\mu$mol/g). In conger eels, the major total and free amino acids were glutamic acid (14,178.7$\sim$7,802.6 mg%), aspartic acid (4,669.2$\sim$8,259.0 mg%), lysine (4,198.3$\sim$7,540.8 mg%), leucine (3,843.6$\sim$6,782.1 mg%), and histidine (199.6$\sim$644.4 mg%), glycine (94.8$\sim$152.2 mg%), alanine (35.3$\sim$71.2 mg%), glutamic acid (44.1$\sim$70.6 mg%), respectively, but the concentration of amino acids was different by season. The content of free amino acids, which is related to the taste component, was detected as high in summer and winter at 1179.2 and 1,605.2 mg%, respectively.

외식산업에서의 붕장어 이용성 증대에 기여하고자 계절에 따른 일반성분, 지방산, 핵산관련성분 및 아미노산의 변화를 분석하였다. 여름철 붕장어의 조지방 함량이 3.2%로 가장 낮게 나타났으며, 이는 붕장어의 산란기에 따른 영향으로 생각된다. 지방산 조성 중 포화지방산인 palmitic acid, stearic acid, 단일불포화지방산인 oleic acid, palmitoleic acid 그리고 다가불포화지방산인 DHA, EPA가 주요 지방산으로 확인되었다. 전체 지방산 중 oleic acid가 36.76$\sim$45.11%로 가장 높은 함량을 차지하였고, 다가불포화지방산의 조성비가 봄에서 겨울로 갈수록 증가하는 경향을 나타냈다. 그러나 지방산 조성비의 계절적 차이는 뚜렷하게 나타나지 않았다. 핵산관련성분 중 맛에 직접적인 영향을 주는 IMP(3.617$\sim$5.524 $\mu$ mol/g)와 Hx(0.913$\sim$2.238 $\mu$ mol/g) 그리고 무미의 HxR(0.625$\sim$1.652 $\mu$mol/g)이 ATP(0.058$\sim$0.083 $\mu$mol/g), ADP(0.145$\sim$0.161 $\mu$mol/g), AMP(0.166$\sim$0.179 $\mu$mol/g)보다 높은 함량을 보였으며, 어류의 지미성분인 IMP와 Hx의 함량이 7.219 $\mu$mol/g으로 겨울에 가장 높게 나타났다. 아미노산 중 glutamic acid(14,178.7$\sim$7,802.6 mg%), aspartic acid(4,669.2$\sim$8,259.0 mg%), lysine(4,198.3$\sim$7,540.8mg%), leucine(3,843.6$\sim$6,782.1 mg%) 등이 주요 구성아미노산으로, histidine(199.6$\sim$644.4 mg%), glycine(94.8$\sim$152.2 mg%), alanine(35.3$\sim$71.2 mg%), glutamic acid (44.1$\sim$70.6 mg%) 등이 주요 유리아미노산으로 확인되었으며, 정미물질 중 맛과 관련 있는 유리아미노산의 총량은 여름철과 겨울철에 각각 1,179.2과 1,605.2 mg%로 높게 나타났다. 어류의 주요 정미성분의 함량으로 확인한 결과 핵산관련성분은 겨울철이, 유리아미노산은 여름철이 가장 많았으나 이들 정미성분의 함량이 특정 계절에만 높게 나타나지는 않았다. 따라서 붕장어의 맛은 정미관련성분들과 관련이 크지만 단순히 정미성분만이 아닌 다른 여러 성분과의 복합적인 상호작용에 의한 결과라고 생각된다.

Keywords

References

  1. Lee EH, Kim SK, Cho GD. 1997. Nutritional component and health in the fishery resources of coastal and offshore waters in Korea. Youil Publishing Co., Busan. p 43-46
  2. Ministry for Food, Agriculture, Forestry and Fisheries. 2008. Major statistics of agriculture and forestry. p 414
  3. 佐藤魚水. 2000. 食材圖鑑-魚. 永岡書店, 東京. p 86
  4. Choi JH, Choi SH, Kim JB, Park JH, Oh CW. 2008. Feeding ecology of the white-spotted conger eel (Conger myriaster) in the southern sea of Korea. J Kor Fish Soc 41: 282-288 https://doi.org/10.5657/kfas.2008.41.4.282
  5. Oh KS, Moon SK, Lee EH. 1989. Comparison of lipid components and amino acid composition of sea eel by size. Korean J Food Sci Technol 21: 192-196
  6. Heu MS, Lee TS, Kim HS, Jee SJ, Lee JH, Kim HJ, Yoon MS, Park SH, Kim JS. 2008. Food component characteristics of Tang from conger eel by-products. J Korean Soc Food Sci Nutr 37: 477-484 https://doi.org/10.3746/jkfn.2008.37.4.477
  7. Kim HY, Shin JW, Sim GC, Park HO, Kim HS, Kim SM, Cho JS, Jang YM. 2000. Comparison of the taste compounds of wild and cultured eel, puffer and snake head. Korean J Food Sci Technol 32: 1058-1067
  8. Venugopal V. 2002. Biosensors in fish production and quality control. Biosens Bioelectron 17: 147-157 https://doi.org/10.1016/S0956-5663(01)00180-4
  9. Kassemsarn BO, Sanz Perez B, Murray J, Jones NR. 1963. Nucleotide degradation in the muscle of iced haddock (Gadus aeglefinus), lemon sole (Pleuronecetes microcephalus), and plaice (Pleuronecetes platessa). J Food Sci 28: 28-30 https://doi.org/10.1111/j.1365-2621.1963.tb00155.x
  10. Hiltz DF, Dyer WJ, Nowlan S, Dingle JR. 1972. Variation of biochemical quality indices by biological and technical factors. In Fish Inspection and Quality Control. Kreuzer R, ed. Fishing News (Books) Limited, London, UK. p 191-195
  11. Gill TA. 1990. Objective analysis of seafood quality. Food Rev Int 6: 681-714 https://doi.org/10.1080/87559129009540899
  12. Fletcher GC, Olley J, Statham JA, Vail AMA. 1986. Inosine monophosphate, hypoxanthine and taste panel scores for fish flavor acceptability. CSIRO, Tasmanian Regional Laboratory Occasional Paper No. 12. Tasmania, Australia
  13. Konosu S, Maeda Y, Fujita T. 1960. Evaluation of inosinic acid and free amino acids as tasting substance in the Katsuwobushi stock. Bull J apan Soc Sci Fish 26: 45-48 https://doi.org/10.2331/suisan.26.45
  14. Huss HH. 1988. Fresh fish quality and quality changes. No 29. FAO. Rome, Italy
  15. Murata M, Sakaguchi M. 1986. Storage of yellowtail (Seriola quinqueradiata) white and dark muscle in ice: Changes in content of adenine nucleotides and related compounds. J Food Sci 51: 321-326 https://doi.org/10.1111/j.1365-2621.1986.tb11120.x
  16. Watabe S, Kamal M, Hashomoto K. 1991. Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. J Food Sci 56: 151-153 https://doi.org/10.1111/j.1365-2621.1991.tb07998.x
  17. Hong CH. 2003. Study on the changes of taste compounds of the raw fish in the foodservice industry. MS Thesis. Chosun University, Gwangju, Korea. p 7
  18. Kim JS, Oh KS, Lee JS. 2001. Comparison of food component between conger eel (Conger myriaster) and sea eel (Muraenesox cinereus) as a sliced raw fish meat. J Korean Fish Soc 34: 678-684
  19. Cho SH, Seong PN, Kim JH, Park BY, Baek BH, Lee YJ, In TS, Lee JM, Kim DH, Ahn CN. 2008. Calorie, cholesterol, collagen, free amino acids, nucleotide-related compounds and fatty acid composition of hanwoo steer beef with 1++ quality grade. Korean J Food Sci Ani Resour 28: 333-343 https://doi.org/10.5851/kosfa.2008.28.3.333
  20. Kim YG, Yoo YM, Kim JH, An JN. 2007. The common sense of meats. National Institute of Animal Science. Suwon, Korea. p 15-16
  21. Ahn DH, Park SY. 2002. Studies on components related to taste such as free amino acids and nucleotides in Korean native chicken meat. J Korean Soc Food Sci Nutr 31: 547-552 https://doi.org/10.3746/jkfn.2002.31.4.547
  22. Lee EH, Han BH. 1972. Degradation of nucleotides and their related compounds in sea foods during processing and storage. J Korean Soc Food Nutr 1: 17-24
  23. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA
  24. AOCS. 1997. Official Method Ce 1-62. 15th ed. American Oil Chemists' Society, Champaign, IL, USA
  25. Hirano T, Nakamura H, Suyama M. 1980 Quality of wild and cultured ayu-II seasonal variation of proximate composition. Bull J apan Soc Sci Fish 46: 75-78 https://doi.org/10.2331/suisan.46.75
  26. Ahn CB, Shin TS. 2002. Seasonal variation of lipids and fatty acids of sharp toothed eel (Muraenesox cinereus). Korean J Life Sci 12: 233-241 https://doi.org/10.5352/JLS.2002.12.3.233
  27. Choi JH, Rhim CH, Bae TJ, Byun DS, Yoon TH. 1985. Studies on lipids in fresh-water fishes, 7. comparison of lipid components among wild and cultured eel (Anguilla japonica), and conger eel (Astroconger myriaster). Bull Korean Fish Soc 18: 439-446
  28. Fletcher GC, Statham JO. 1988. Shelf life of sterile yellow- eyed mullet (Aldrichetta forsteri ) at 4oC. J Food Sci 53: 1030-1035 https://doi.org/10.1111/j.1365-2621.1988.tb13523.x
  29. Yamaguchi S. 1991. Roles and efficacy of sensory evaluation in studies of taste. J J apan Soc Food Sci Technol 38: 972-978 https://doi.org/10.3136/nskkk1962.38.972
  30. Japan Foods Industry Association. 1984. Method of food analysis. Kouring, Tokyo, Japan. p 491-508
  31. Ohta S. 1976. Food seasoning. Saiwaisyobow, Tokyo, Japan. p 146-187
  32. Shou H. 1969. Food component and taste. J Food Indu J ap 16: 83-87
  33. Kato H, Rhue MR, Nishimura T. 1989. Role of free amino acids and peptides in food taste. Amer Chem Soc 388: 158-174
  34. Ney KH. 1979. Bitterness of peptides: amino acid composition and chain length. Amer Chem Soc 115: 149-173

Cited by

  1. Monthly Variations in the Nutritional Composition of Antarctic Krill Euphausia superba vol.17, pp.4, 2014, https://doi.org/10.5657/FAS.2014.0409
  2. Quality Properties of Fermented Squid Seasoning Manufactured with Fermentation Accelerator vol.43, pp.3, 2011, https://doi.org/10.9721/KJFST.2011.43.3.334
  3. Comparison of Free Amino Acids and Nucleotides Content in the Olive Flounder Paralichthys olivaceus Fed with Extruded Pellet vol.18, pp.5, 2011, https://doi.org/10.11002/kjfp.2011.18.5.746
  4. Sanitary Quality Characterization of Commercial Semi-dried Conger Eel Conger myriaster and the Guideline for Controlling Quality vol.48, pp.4, 2015, https://doi.org/10.5657/KFAS.2015.0417
  5. Physicochemical Composition and Fermentation Conditions of Sliced, Dried Radish Kimchi with Flying Fish Roe vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.566
  6. Changes in the taste compounds of Kimchi with seafood added during its fermentation vol.20, pp.3, 2013, https://doi.org/10.11002/kjfp.2013.20.3.404
  7. Comparison of Taste Components of Giant Squid Architenthis dux via Processing Methods vol.18, pp.4, 2011, https://doi.org/10.11002/kjfp.2011.18.4.508
  8. Evaluation of Muscle Quality of Olive Flounder (Paralichthys olivaceus) Fed Extruded Pellets Containing Different Protein and Lipid Levels, and Raw Fish-based Moist Pellet vol.18, pp.5, 2011, https://doi.org/10.11002/kjfp.2011.18.5.729
  9. 부유망식과 수하식 양성방법에 따른 참굴(Crassostrea gigas)의 선도와 항산화활성 vol.50, pp.5, 2009, https://doi.org/10.5657/kfas.2017.0500
  10. Processing and Characteristics of Canned Conger Eel Conger myriaster in Different Oil vol.31, pp.3, 2009, https://doi.org/10.13000/jfmse.2019.6.31.3.820
  11. Processing and Characteristics of Canned Seasoned Conger Eel Conger myriaster vol.31, pp.5, 2009, https://doi.org/10.13000/jfmse.2019.10.31.5.1255
  12. Quality Characteristics of Dried Oysters Using Hybrid Pressure Relief Heat Pump Dryer vol.53, pp.6, 2019, https://doi.org/10.14397/jals.2019.53.6.109
  13. 초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성 vol.25, pp.4, 2009, https://doi.org/10.7464/ksct.2019.25.4.273
  14. 붕장어(Conger myriaster) 조미소스를 활용한 조미김(Pyropia yezoensis)의 영양특성 vol.53, pp.3, 2009, https://doi.org/10.5657/kfas.2020.0382