DOI QR코드

DOI QR Code

ANALYSIS AND COMPUTATIONS OF LEAST-SQUARES METHOD FOR OPTIMAL CONTROL PROBLEMS FOR THE STOKES EQUATIONS

  • Published : 2009.09.01

Abstract

First-order least-squares method of a distributed optimal control problem for the incompressible Stokes equations is considered. An optimality system for the optimal solution are reformulated to the equivalent first-order system by introducing the vorticity and then the least-squares functional corresponding to the system is defined in terms of the sum of the squared $H^{-1}$ and $L^2$ norms of the residual equations of the system. Finite element approximations are studied and optimal error estimates are obtained. Resulting linear system of the optimality system is symmetric and positive definite. The V-cycle multigrid method is applied to the system to test computational efficiency.

Keywords

References

  1. H. K. Baek, S. D. Kim, and H.-C. Lee, A Multigrid method for an optimal control problem of a diffusion-convection equation, submitted
  2. M. Bergounioux, Augmented Lagrangian method for distributed optimal control problems with state constraints, J. Optim. Theory Appl. 78 (1993), no. 3, 493.521 https://doi.org/10.1007/BF00939879
  3. P. B. Bochev and M. D. Gunzburger, Analysis of least squares finite element methods for the Stokes equations, Math. Comp. 63 (1994), no. 208, 479.506 https://doi.org/10.2307/2153280
  4. P. B. Bochev and M. D. Gunzburger, Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations, Comput. Methods Appl. Mech. Engrg. 126 (1995), no. 3-4, 267.287 https://doi.org/10.1016/0045-7825(95)00826-M
  5. P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Rev. 40 (1998), no. 4, 789.837 https://doi.org/10.1137/S0036144597321156
  6. P. B. Bochev and M. D. Gunzburger, Least-squares finite-element methods for optimization and control problems for the Stokes equations, Comput. Math. Appl. 48 (2004), no. 7-8, 1035.1057 https://doi.org/10.1016/j.camwa.2004.10.004
  7. P. B. Bochev and M. D. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and control problems, SIAM J. Numer. Anal. 43 (2006), no. 6, 2517.2543 https://doi.org/10.1137/040607848
  8. P. B. Bochev, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux firstorder system least-squares principles for the Navier-Stokes equations. I., SIAM J. Numer. Anal. 35 (1998), no. 3, 990.1009 https://doi.org/10.1137/S0036142996313592
  9. P. B. Bochev, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux least-squares principles for the Navier-Stokes equations. II., SIAM J. Numer. Anal. 36 (1999), no. 4, 1125.1144. https://doi.org/10.1137/S0036142997324976
  10. J. H. Bramble, R. D. Lazarov, and J. E. Pasciak, A least-squares approach based on a discrete minus one inner product for first order systems, Math. Comp. 66 (1997), no. 219, 935.955 https://doi.org/10.1090/S0025-5718-97-00848-X
  11. J. H. Bramble and J. E. Pasciak, Least-squares methods for Stokes equations based on a discrete minus one inner product, J. Comput. Appl. Math. 74 (1996), no. 1-2, 155.173 https://doi.org/10.1016/0377-0427(96)00022-2
  12. Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for velocityvorticity- pressure form of the Stokes equations, with application to linear elasticity, Electron. Trans. Numer. Anal. 3 (1995), Dec., 150.159
  13. Z. Cai, First-order system least squares for the Stokes equations, with application to linear elasticity, SIAM J. Numer. Anal. 34 (1997), no. 5, 1727.1741. https://doi.org/10.1137/S003614299527299X
  14. C. Chang and M. Gunzburger, A finite element method for first order elliptic systems in three dimensions, Appl. Math. Comput. 23 (1987), no. 2, 171.184 https://doi.org/10.1016/0096-3003(87)90037-3
  15. Y. Choi, H.-C. Lee, and B.-C. Shin, A least-squares/penalty method for distributed optimal control problems for Stokes equations, Comput. Math. Appl. 53 (2007), no. 11, 1672.1685 https://doi.org/10.1016/j.camwa.2007.01.009
  16. P. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York- Oxford, 1978
  17. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and algorithms. Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986
  18. R. Glowinski and J. He, On shape optimization and related issues, Computational methods for optimal design and control (Arlington, VA, 1997), 151.179, Progr. Systems Control Theory, 24, Birkhauser Boston, Boston, MA, 1998
  19. M. D. Gunzburger, Perspectives in Flow Control and Optimization, Advances in Design and Control, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003
  20. M. D. Gunzburger, L. S. Hou, and T. Svobodney, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls, Math. Comp. 57 (1991), no. 195, 123.151 https://doi.org/10.1090/S0025-5718-1991-1079020-5
  21. M. D. Gunzburger and H.-C. Lee, Analysis and approximation of optimal control problems for first-order elliptic systems in three dimensions, Appl. Math. Comput. 100 (1999), no. 1, 49.70 https://doi.org/10.1016/S0096-3003(98)00017-4
  22. M. D. Gunzburger and H.-C. Lee, A penalty/least-squares method for optimal control problems for first-order elliptic systems, Appl. Math. Comput. 107 (2000), no. 1, 57.75 https://doi.org/10.1016/S0096-3003(99)00010-7
  23. J.-W. He, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux, Active control and drag optimization for flow past a circular cylinder, J. Comput. Phys. 163 (2000), no. 1, 83.117 https://doi.org/10.1006/jcph.2000.6556
  24. J.-W. He, M. Chevalier, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux, Drag reduction by active control for flow past cylinders, Computational mathematics driven by industrial problems (Martina Franca, 1999), 287.363, Lecture Notes in Math., 1739, Springer, Berlin, 2000 https://doi.org/10.1007/BFb0103923
  25. B.-N. Jiang and L. A. Povinell, Optimal least-squares finite element method for elliptic problems, Comput. Methods Appl. Mech. Engrg. 102 (1993), no. 2, 199.212 https://doi.org/10.1016/0045-7825(93)90108-A
  26. H.-C. Lee and Y. Choi, A least-squares method for optimal control problems for a secondorder elliptic system in two dimensions, J. Math. Anal. Appl. 242 (2000), no. 1, 105.128 https://doi.org/10.1006/jmaa.1999.6658
  27. H.-C. Lee and O. Yu. Imanuvilov, Analysis of Neumann boundary optimal control problems for the stationary Boussinesq equations including solid media, SIAM J. Control Optim. 39 (2000), no. 2, 457.477 https://doi.org/10.1137/S0363012998347110
  28. H.-C. Lee and O. Yu. Imanuvilov, Analysis of optimal control problems for the 2-D stationary Boussinesq equations, J. Math. Anal. Appl. 242 (2000), no. 2, 191.211 https://doi.org/10.1006/jmaa.1999.6651

Cited by

  1. FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS vol.51, pp.3, 2014, https://doi.org/10.4134/BKMS.2014.51.3.847