암진단시스템을 위한 Weighted Kernel 및 학습방법

Weighted Kernel and it's Learning Method for Cancer Diagnosis System

  • 투고 : 2009.01.25
  • 발행 : 2009.04.30

초록

많은 양의 데이터로부터 유용성있는 정보의 추출, 진단 및 예후에 대한 결정, 질병 치료의 응용 등은 바이오 인포머틱스(Bioinformatics)분야에서 매우 중요한 문제들이다. 본 논문에서는 암진단시스템에 적용하기위해 support vector machine을 위한 weogjted lernel fuction과 빠른 수렴성과 좋은 분류성능을 갖는 학습방법을 제안하였다. 제안된 kernel function에서 기본적인 kernel fuction의 weights는 암진단 학습단계에서 결정되고 분류단계에서 파리미터로 사용된다. 대장암 데이터와 같은 임상 데이터에 대한 실험결과에서 제안된 방법은 기존의 다른 kernel fuction들 보다 더 우수하고 안정적인 분류성능을 보여주었다.

One of the most important problems in bioinformatics is how to extract the useful information from a huge amount of data, and make a decision in diagnosis, prognosis, and medical treatment applications. This paper proposes a weighted kernel function for support vector machine and its learning method with a fast convergence and a good classification performance. We defined the weighted kernel function as the weighted sum of a set of different types of basis kernel functions such as neural, radial, and polynomial kernels, which are trained by a learning method based on genetic algorithm. The weights of basis kernel functions in proposed kernel are determined in learning phase and used as the parameters in the decision model in classification phase. The experiments on several clinical datasets such as colon cancer indicate that our weighted kernel function results in higher and more stable classification performance than other kernel functions.

키워드

참고문헌

  1. Richard O. Duda, Peter E. Hart, David G. Stork.: Pattern Classification (2nd Edition), John Wiley & Sons Inc., 2001.
  2. Joachims, Thorsten.: Making large-Scale SVM Learning Practical. In Advances in Kernel Methods -Support Vector Learning, chapter II. MIT Press, 1999.
  3. Bernhard Schokopf, Alexander J. Smola: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning), MIT press, 2002
  4. M.L. Minsky and S.A. Papert: Perceptrons, MIT Press, 1969.
  5. Z.Michalewicz.: Genetic Algorithms + Data structures = Evolution Programs, Springer-Verlag, 3 re rev. and extended ed., 1996.
  6. D. E. Goldberg.: Genetic Algorithms in Search, Optimization & Machine Learning, Adison Wesley, 1989.
  7. Melanie Mitchell.: Introduction to Genetic Algorithms, MIT press, fifth printing, 1999.
  8. U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A Levine.: Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays, Proceedings of National Academy of Sciences of the United States of American, vol 96, pp. 6745-6750, 1999. https://doi.org/10.1073/pnas.96.12.6745
  9. T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield and E. S. Lander.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, vol. 286, pp. 531 - 537, 1999. https://doi.org/10.1126/science.286.5439.531