DOI QR코드

DOI QR Code

Cyanide Degradation by Two Recombinant Cyanide Hydratases

Recombinant Cyanide Hydratases에 의한 시안화물 분해

  • Kwon, Sung-Hyun (Department of Marine Environmental Engineering/lnstitute of Marine Industry Gyeongsang National University) ;
  • Cho, Dae-Chul (Department of Energy & Environmental Engineering, Soonchunhyang University)
  • 권성현 (경상대학교 해양환경공학과(해양산업연구소)) ;
  • 조대철 (순천향대학교 에너지환경공학과)
  • Published : 2009.06.30

Abstract

The genes of cyanide hydratase(CHT), a kind of nitrilases whichhydrolyze cyanide to formamide were extracted from N. crassa and A. nidulans, the two fungal strains. The recombinant forms of the CHT originated from N. crassa and A. nidulans were prepared with N-terminal hexahistidine purificationtags or no tags, and expressed in E. coli. The enzymes were purified using immobilized metal affinity chromatography. They were compared according to their pH activity profiles, and kinetic parameters. The N. crassa CHT has the wider pH range of activity above 50% and three-fold higher turnover rate (6.6 ${\times}$ $10^8$ $min^{-1}$) than the A. nidulans, meanwhile the CHT of A. nidulans has the higher $K_m$ value. Expression of CHT in both N. crassa and A. nidulans were induced by the presence of KCN, regardless of any presence of nitrogen sources. Max. 82% of KCN was degraded in 60 min for biological degradation tests.

시안화물을 포름아미드로 변환시키는 nitrilase의 일종인 시안 수화효소 (cyanide hydratase, CHT) 를 진균류인 Neurospora crassa 와 Aspergillus nidulans로부터 유전자 조작을 통하여 His에 태그 또는 언태그된 형태로 대장균에 형질변환시켜 발현하였다. 발현된 효소를 고정 metal affinity chromatography로 정제하였다. 정제된 효소들의 pH 안정성, 동력학적 매개변수의 값을 검토하였다. 실험 결과 N. crassa 의 CHT가 50% 정도 더 넓은 pH 안정 범위를 가졌고 3배 가량 turnover rate도 높았다. 반면 A. nidulans CHT의 Km 값 (효소포화 용량)이 N. crassa CHT보다 더 크게 나타났다. 두 진균류에서 CHT의 유도발현은 질소성분과 상관없이 KCN에 의해 가능하였으며, 생분해 실험결과 N. crassa CHT에 의해 최대 82%/h의 시안분해가 가능하였다.

Keywords

References

  1. Baxter J., and Cummings S.P., The current and future applications of microorganism in the bioremediation of cyanide contamination, Ant. Van Leeuwen., Vol.90, 1-17, 2006. https://doi.org/10.1007/s10482-006-9057-y
  2. Akcil A., and Mudder T., Microbial destruction of cyanide wastes in gold mining: process review, Biotechnol. Lett., Vol.25, 445-450, 2003. https://doi.org/10.1023/A:1022608213814
  3. Hardy R.W. and Knight E., ATP dependent reduction of azide and HCN by N2 fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum, Biochim. Biophys. Acta, Vol.139, 69-90, 1967. https://doi.org/10.1016/0005-2744(67)90114-3
  4. Westley J., Thiosulfate:cyanide sulfurtransferase(rhodanese), Met. Enzymol., Vol. 77, 285-291, 1987.
  5. Kobayashi M., Goda M. and Shimizu S., Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis, Biochim Biophys. Res. Comm., Vol.253, 662-666, 1998. https://doi.org/10.1006/bbrc.1998.9834
  6. Brenner C., Catalysis in the nitrilase superfamily, Curr. Opn. Struct. BioI., Vol.12, 775-782, 2002. https://doi.org/10.1016/S0959-440X(02)00387-1
  7. Pace H.C. and Brenner, C., The nitrilase superfamily: classification, structure ad function, Gen. BioI., Vol.2, REVIEWS0001, 2001.
  8. Banerjee A., Sharma R. and Banerjee U.C., The nitrileenzymes current status and future prospects, Appl. Microbiol. Biotechnol., Vol.60, 33-44, 2002. https://doi.org/10.1007/s00253-002-1062-0
  9. Kobayashi M. and Shimizu S., Versatile nitrilase: Nitrileenzymes, FEMS Microbiol. Lett., Vol.20, 217-224, 1994. https://doi.org/10.1111/j.1574-6968.1983.tb00120.x
  10. Watanabe A., Yano K., Ikebukuro K. and Karube I., Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61, Appl. Microbiol. Biotechnol., Vol.50, 93-97, 1998. https://doi.org/10.1007/s002530051261
  11. Sewell B.T., Meyers P., Berman M, Jandhyala D.M., and Benedik M.J., The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a twofold symmetric, 14spiral, Structure, Vol.11, 1413-1422, 2003. https://doi.org/10.1016/j.str.2003.10.005
  12. Jandhyala D.M., Willson R.C., Sewell B.T. and Benedik M.J., Comparison of cyanide degrading nitrilases, Appl. Microbiol. Biotechnol., Vol.68, 327-335, 2005. https://doi.org/10.1007/s00253-005-1903-8
  13. Studier F.W., Protein production by auto induction in high density shaking cultures, Prot. Expr. Purif., VoI.41,207-214,2005. https://doi.org/10.1016/j.pep.2005.01.016
  14. Vogel H.J., A convenient growth medium for Neurospora (medium N), Microbiol. Genet. Bull., Vol.13, 42-43. 1956.
  15. Kaminsky S.G.W., Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans, Fung. Genet. Newslett., 25-31, 2001.
  16. Fisher F.B., and Brown J.S., Colorimetric determination of cyanide in stack gas and waste water, Anal. Chem., Vol.24, 1440-1444, 1952. https://doi.org/10.1021/ac60069a014
  17. Cluness M.J., Turner P.D., Clements E., Brown D.T. and O'Reilly C., Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene," J. Gen. Microbiol., Vol.39, 1807-1815, 1993.
  18. Sexton A.C., and Howlett B.J., Characterisation of a cyanide hydratase gene in the phytopathogenic fungus Leptosphaeria maculans, Mol. Gen. Genet., Vol.263, 463-470, 2000. https://doi.org/10.1007/s004380051190
  19. Barclay M., Tett V.A. and Knowles C.J., Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions, Enz. Microb. Technol., Vol.23, 321-330, 1998. https://doi.org/10.1016/S0141-0229(98)00055-6