Myocardial Perfusion PET

심근관류 PET

  • Cho, Ihn-Ho (Department of Nuclear Medicine, Yeungnam University, College of Medicine) ;
  • Kong, Eun-Jung (Department of Nuclear Medicine, Yeungnam University, College of Medicine)
  • 조인호 (영남대학교 의과대학 핵의학교실) ;
  • 공은정 (영남대학교 의과대학 핵의학교실)
  • Published : 2009.06.30

Abstract

Positron emission tomogrpahy (PET) represents the most advanced scintigraphic imaging technology. With the increase in availability of PET, the clinical use of PET has grown in medical fields. This can be employed for cardiovascular research as well as for clinical applications in patients with various cardiovascular disease. PET allows non-invasive functional assessment of myocardial perfusion, substrate metabolism and cardiac innervation and receptors as well as gene expression in vivo. PET is regarded as the gold standard for the detection of myocardial viability, and it is the only method available for the quantitative assessment of myocardial blood flow. This review focuses on the clinical applications of myocardial perfusion PET in coronary artery disease.

Keywords

References

  1. Beanlands R, Chow BJ, Dick A, Friedrich MG, Gulenchyn KY, Kiess M, et al. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced non-invasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multi-detector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease abbreviated report. Can J Cardiol 2007;23:107-19 https://doi.org/10.1016/S0828-282X(07)70730-4
  2. Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med 2005;35:17-36 https://doi.org/10.1053/j.semnuclmed.2004.09.002
  3. Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, et al. Positron emissiontomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 2006;13:121-51 https://doi.org/10.1016/j.nuclcard.2006.08.009
  4. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007;32:375-410 https://doi.org/10.1016/j.cpcardiol.2007.04.001
  5. Mullani NA, Goldstein RA, Gould KL, Marani SK, Fisher DJ, O'Brien HA Jr, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24:898-906
  6. Wilson RA, Shea M, Landsheere CD, DeanfieId J, Lammertsma AA, Jones T, et al. Rubidium-82 myocardial uptake and extraction after transient ischemia: PET characteristics. J Comput Assist Tomogr 1987;11:60-6 https://doi.org/10.1097/00004728-198701000-00012
  7. Chow BJ, Ananthasubramaniam K, deKemp RA, Dalipaj MM, Beanlands RS, Ruddy TD. Comparison of treadmill exercise versus dipyridamole stress with myocardial perfusion imaging using rubidium-82 positron emission tomography. J Am Coll Cardiol 2005;45:1227-34 https://doi.org/10.1016/j.jacc.2005.01.016
  8. Hickey KT, Sciacca RR, Bokhari S, Rodriguez O, Chou RL, Faber TL, et al. Assessment of cardiac wall motion and ejection fraction with gated PET using N-13 ammonia. Clin Nucl Med 2004;29:243-8 https://doi.org/10.1097/01.rlu.0000118001.14457.c3
  9. Schelbert HR, Phelps ME, Hoffman EJ, Hang SC, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia positron emission computerized axial tomography. Am J Cardiol 1979;43:209-18 https://doi.org/10.1016/S0002-9149(79)80006-5
  10. Schelbert HR Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981;63:1259-72 https://doi.org/10.1161/01.CIR.63.6.1259
  11. Rauch B, Helus F, Grunze M, Braunwell E, Mall G, Hasselbach WH, et al. Kinetics of N-ammonia uptake in myocardial single cells indicating potential limitations in its applicability as a marker of myocardial blood flow. Circulation 1985;71:387-93 https://doi.org/10.1161/01.CIR.71.2.387
  12. Krivokapich J, Huang SC, Phelps ME, MacDonald NS, Shine KI. Dependence of $^{13}$NH3 myocardial extraction and clearance on flow and metabolism. Am J Physiol 1982;242:H536-42
  13. deKemp RA, Yoshinaga K, Beanlands RS. Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow? J Nucl Cardiol 2007;14:380-97 https://doi.org/10.1016/j.nuclcard.2007.04.006
  14. Beanlands RS, Muzik O, Hutchins GD, Wolfe ER Jr, Schwaiger M. Heterogeneity of regional nitrogen 13-labeled ammonia tracer distribution in the normal human heart: comparison with rubidium 82 and copper 62-labeled PTSM. J Nucl Cardiol 1994;1:225-35 https://doi.org/10.1007/BF02940336
  15. Yoshinaga K, Katoh C, Noriyasu K, Iwado Y, Furuyarna H, Ito Y, et al. Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15-labeled water PET. J Nucl Cardiol 2003;10:275-83 https://doi.org/10.1016/S1071-3581(02)43243-6
  16. Sun KT, Yeatman LA, Buxton DB, Chen K, Johnson JA, Huang SC, et al. Simultaneous measurement of myocardial oxygen onsumption and blood flow using 11-carbon acetate. J Nucl Med 1998;39:272-80
  17. Green MA, Mathias CJ, Welch MJ, McGuire AH, Perry D, Fernandez-Rubio F, et al. Copper-62-labeled pyruvaldehyde bis N4-methyIthiosemicarbazonato) copper (II): synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion. J Nucl Med 1990;31:1989-96
  18. Madar I, Ravert H, Dipaula A, Du Y, Dannals RF, Becker L. Assessment of severity of coronary artery stenosis in a canine model using the PETagent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J Nucl Med 2007;48:1021-30 https://doi.org/10.2967/jnumed.106.038778
  19. Yalamanchili P, Wexler E, Hayes M, Yu M, Bozek J, Kagan M, et al. Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol 2007;14:782-8 https://doi.org/10.1016/j.nuclcard.2007.07.009
  20. Piossl K, Chandra R, Qu W, Lieberman BP, Kung MP, Zhou R, et al. A novel gallium bisaminothiolate complex as a myocardial perfusion imaging agent. Nucl Med Biol 2008;35:83-90 https://doi.org/10.1016/j.nucmedbio.2007.08.002
  21. Bokhari S, Ficaro EP, McCallister BD Jr. Adenosine stress protocols for myocardial perfusion imaging. J Nucl Cardiol 2007;14:415-6 https://doi.org/10.1016/j.nuclcard.2007.04.005
  22. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33 https://doi.org/10.1016/j.nuclcard.2005.12.004
  23. Kauffinann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46:75-88
  24. Parkash R, de Kemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel disease. J Nucl Cardiol 2004;11:440-9 https://doi.org/10.1016/j.nuclcard.2004.04.005
  25. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of left ventricular ejection fraction reserve in assessment of severe left main/three-vessel coronary artery disease: a rubidium-82 PET-CT study. J Nucl Med 2007;48:349-58
  26. Brown TL, Merrill J, Volokh L, Bengel FM. Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated 82-rubidium myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2008;35:336-42 https://doi.org/10.1007/s00259-007-0603-2
  27. Lertsburapa K, Ahlberg AW, Bateman TM, Katten D, Volker L, Cullom SJ, et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 2008;15:745-53 https://doi.org/10.1016/j.nuclcard.2008.06.168
  28. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman OS, el al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging. J Am Coli Cardiol 2003;42:1318-33 https://doi.org/10.1016/j.jacc.2003.08.011
  29. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA et al. ACCF/ASNC/ACR/AHA/ASE/SCCTI/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Endorsed by the American College of Emergency Physicians. J Am Coll Cardiol 2009;53:2201-29ㄸ㘰ⴰ〭〰ㄹ㐲ⴰ〭〰ㄹ㔱ⴰ〭〰ㄹ㔷ⴰ〭〰ㄹ㘱ⴰ〭〰ㄹ㘲ⴰ〭〰ㄹ㘵ⴰ〭〰ㄹ㘷ⴰ〭〰ㄹ㘹ⴰ〭〰ㄹ㜰ⴰ〭〰ㄹ㜲ⴰ〭〰ㄹ㜳ⴰ〭〰ㄹ㜴ⴰ〭〰ㄹ㜴ⴱㄭ〰ㄹ㜵ⴰ〭〰ㄹ㜶ⴰ〭〰ㄹ㜷ⴰ〭〰ㄹ㜸ⴰ〭〰ㄹ㜸ⴰ㤭〰ㄹ㜹ⴰ〭〰ㄹ㜹ⴱ㈭〰ㄹ㠰ⴰ〭〰ㄹ㠱ⴰ〭〰ㄹ㠲ⴰ〭〰ㄹ㠳ⴰ〭〰ㄹ㠴ⴰ〭〰ㄹ㠴ⴰㄭ〰ㄹ㠵ⴰ〭〰ㄹ㠶ⴰ〭〰ㄹ㠷ⴰ〭〰ㄹ㠷ⴰ㌭〰ㄹ㠸ⴰ〭〰ㄹ㠹ⴰ〭〰ㄹ㤰ⴰ〭〰ㄹ㤱ⴰ〭〰ㄹ㤱ⴰㄭ〰ㄹ㤲ⴰ〭〰ㄹ㤲ⴰㄭ〰ㄹ㤳ⴰ〭〰ㄹ㤳ⴰ㈭〰ㄹ㤳ⴰ㤭〰ㄹ㤴ⴰ〭〰 https://doi.org/10.1016/j.jacc.2009.02.013
  30. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 2006;48:1029-39 https://doi.org/10.1016/j.jacc.2006.06.025
  31. Schelbert HR, Wisenberg G, Phelps ME, Gould KL, Henze E, Hoffinan EJ, et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982;49:1197-207 https://doi.org/10.1016/0002-9149(82)90045-5
  32. Tamaki N, Yonekura Y, Senda M, Kureshi SA, Saji H, Kodama S, et al. Myocardial positron computed tomography with $^{13}$N-ammonia at rest and during exercise. Eur J Nucl Med 1985;11:246-51 https://doi.org/10.1007/BF00279078
  33. Yonekura Y, Tamaki N, Senda M, Nohara R, Kambara H, Konishi Y, et al. Detection of coronary artery disease with $^{13}$N-ammonia and high resolution positron-emission computed tomography. Am Heart J 1987;113:645-54 https://doi.org/10.1016/0002-8703(87)90702-2
  34. Tamaki N, Yonekura Y, Senda M, Yamashita K, Koide H, Saji H, et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988;29:1181-8
  35. Gould KL, Goldstein RA, Mullani NA, Kirkeeide RL, Wong WH, Tewson TJ, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 1986;7:775-89 https://doi.org/10.1016/S0735-1097(86)80336-9
  36. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL, Mullani NA, Smalling RW, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989;79:825-35 https://doi.org/10.1161/01.CIR.79.4.825
  37. Go RT, Marwick TH, Macintyre WJ, Saha GB, Neumann DR, Underwood DA, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899-905
  38. Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67:1303-10 https://doi.org/10.1016/0002-9149(91)90456-U
  39. Marwick TH, Nemec JJ, Stewart WJ, Salcedo EE. Diagnosis of coronary artery disease using exercise echocardiography and positron emission tomography: comparison and analysis of discrepant results. J Am Soc Echocardiogr 1992;5:231-8 https://doi.org/10.1016/S0894-7317(14)80342-8
  40. Grover-McKay M, Ratib O, Schwaiger M, Wohlgelemter D, Araujo L, Nienaber C, et al. Detection of coronary artery disease with positron emission tomography and rubidium 82. Am Heart J 1992;123:646-52 https://doi.org/10.1016/0002-8703(92)90502-M
  41. Laubenbacher C, Rothley J, Sitomer J, Beanlands R, Sawada S, Sutor R, et al. An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localization of coronary artery disease using nitrogen-13-ammonia. J Nucl Med 1993;34:968-78
  42. Wallhaus TR, Lacy J, Stewart R, Bianco J, Green MA, Nayak N, et al. Copper-62-pyruvaldehyde bis (N-methyl-thiosemicarbazone) PET imaging in the detection of coronary artery disease in humans. J Nucl Cardiol 2001;8:67-74 https://doi.org/10.1067/mnc.2001.109929
  43. Walsh MN, Bergmann SR, Steele RL, Kenzora JL, Ter-Pogossian MM, Sobel BE, et al. Delineation of impaired regional myocardial perfusion by positron emission tomography with H2($^{15}$)O. Circulation 1988;78:612-20 https://doi.org/10.1161/01.CIR.78.3.612
  44. Williams BR, Mullani NA, Jansen DE, Anderson BA. A retrospective study of the diagnostic accuracy of a community hospital-based PET center for the detection of coronary artery disease usingrubidium-82. J Nucl Med 1994;35:1586-92
  45. Simone GL, Mullani NA, Page DA, Anderson BA Sr. Utilization statistics and diagnostic accuracy of a nonhospital-based positron emission tomography center for the detection of coronary artery disease using rubidium-82. Am J Physiol Imaging 1992;7:203-9
  46. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052-8 https://doi.org/10.1016/j.jacc.2006.12.015
  47. Husmann L, Wiegand M, Valenta I, Gaemperli O, Schepis T, Siegrist PT, et al. Diagnostic accuracy of myocardial perfusion imaging with single photon emission computed tomography and positron emission tomography: a comparison with coronary angiography. Int J Cardiovasc Imaging 2008;24:511-8 https://doi.org/10.1007/s10554-007-9288-7
  48. Namdar M, Hany TF, Koepfli P, Siegrist PT, Burger C, Wyss CA, et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 2005;46:930-5
  49. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105:186-93 https://doi.org/10.1161/hc0202.102119
  50. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027-35 https://doi.org/10.1056/NEJMoa025050
  51. Hachamovitch R, Rozanski A, Hayes SW, Thomson LE, Germano G, Friedman JD, et al. Predicting therapeutic benefit from myocardial revascularization procedures: are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol 2006;13:768-78 https://doi.org/10.1016/j.nuclcard.2006.08.017
  52. Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997;80:865-70 https://doi.org/10.1016/S0002-9149(97)00537-7
  53. Chow BJ, Wong JW, Yoshinaga K, Ruddy TD, Williams K, deKemp RA, et al. Prognostic significance of dipyridamole-induced ST depression in patients with normal $^{82}$Rb PET myocardial perfusion imaging. J Nucl Med 2005;46:1095-101