Allelic Variation of Glutenin, Granule-Bound Starch Synthase l and Puroindoline in Korean Wheat Cultivar

  • Published : 2009.06.30

Abstract

To investigate the genetic variation of high-and low-molecular-weight glutenin subunits (BMW-GS and LMW-GS), granule-bound starch synthase I (GBSSI) and puroindoline in 24 Korean wheat cultivars. At the BMW-GS compositions, three Glu-A1 alleles, five Glu-B1 alleles and three Glu-D1 alleles were identified. The high frequency of alleles at each locus was Glu-A1c allele (15 cultivars), Glu-B1b allele (16 cultivars) and Glu-D1f allele (16 cultivars). Four alleles were identified at the Glu-A3 and Glu-B3 loci and three at Glu-D3 locus and Glu-A3d, Glu-B3d and Glu-D3a were mainly found at each Glu-3 locus. Glu-A3d, Glu-B3d, Glu-D3b or c (4 cultivars, respectively) and Glu-A3d, Glu-B3d, Glu-D3a and Glu-A3c, Glu-B3d or h, Glu-D3a (3 cultivar, respectively) were predominantly found in Korean wheats. At the GBSS compositions, 2 waxy wheat cultivars, Shinmichal and Shinmichal1, showed null alleles on the Wx loci and other cultivars were wild type in GBSS compositions. At the puroindoline gene compositions, Korean wheat cultivars carried 3 genotypes, which 10 cultivars (41.7%) were Pina-D1a and Pinb-D1a, 11 cultivars (45.8%) had Pina-D1a and Pinb-D1b and 3 cultivars (12.5%) carried Pina-D1b and Pinb-D1a. These genetic variations could present the information to improve flour and end-use quality in Korean wheat breeding programs.

Keywords

References

  1. Andrews, J. L., and J. h. Skerritt. 1996. Wheat dough extensibility screening using a two-site enzyme-linked immuno sorbent assay (ELISA) with antibodies to low molecular weight glutenin subunits. Cereal Chem. 73: 650-657
  2. Baik, B-K., C. S. Park, B. Paszczynska, and C. F. Konzak. 2003. Characteristics of noodles and bread prepared from double null partial waxy wheat. Cereal Chem. 80: 627-633 https://doi.org/10.1094/CCHEM.2003.80.5.627
  3. Baker, R. J. 1977. Inheritance of kernel hardness in spring wheat. Crop Sci. 17:960-962 https://doi.org/10.2135/cropsci1977.0011183X001700060036x
  4. Branlard, G., M. Dardevet, N. Amiour, and G. Igrejas. 2003. Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genet. Res. Crop Evol, 50: 669-679 https://doi.org/10.1023/A:1025077005401
  5. Branlard, G., M. Dardevet, R. Saccomano, F. Lagoutte, and J. Gourdon. 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica. 119: 59-67 https://doi.org/10.1023/A:1017586220359
  6. Cane, K., M. Spackman, and H. A. Eagles. 2004. Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust. J. Agric. Research 55: 89-95 https://doi.org/10.1071/AR03108
  7. Cornish, G. B., F. Bekes, H. M. Allen, and D. J. Martin. 2001. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust. J. Agric. Research 52: 1339-1348 https://doi.org/10.1071/AR01060
  8. Cornish, G. B., P. M. Burridge, G. A. Palmer, and C. W. Wrigley. 1993. Mapping the origins of some HMW and LMW glutenin subunit alleles Australian germplasm. In Proceedings of the 42nd Australian Cereal Chemistry Conference, Sydney, Australia. pp. 255-260
  9. D'Ovidio R. and S. Masci. 2004. The low-molecular-weight glutenin subunits of wheat gluten. J. Cereal Sci. 39: 321-339 https://doi.org/10.1016/j.jcs.2003.12.002
  10. Demeke, T., P. Hucl, and R N. Chibbar. 2000. Frequent absence of GBSS 1B isoprotein in endosperm of Canadian wheat cultivars. Starch/Starke 52: 349-352 https://doi.org/10.1002/1521-379X(200010)52:10<349::AID-STAR349>3.0.CO;2-I
  11. Demeke, T., P. Hucl, R B. Nair, T. Nakamura, and R N. Chibbar. 1997. Evaluation of Canadian and other wheats for waxy proteins. Cereal Chem. 74: 442-444 https://doi.org/10.1094/CCHEM.1997.74.4.442
  12. Eagles, H. A, H. S. Bariana, F. C. Ogbonnaya, G. J. Rebetzke, G. J. Hollamby, R J. Henry, P. H. Henschke, and M. Carter, 2001. Implementation of markers in Australian wheat breeding. Aust. J. Agric. Research 52: 1349-1356 https://doi.org/10.1071/AR01067
  13. Flaete, N. E. S. and A K. Uhlen. 2003. Association between allelic variation at the combined Gli-L, Glu-S loci and protein quality in common wheat (Triticum aestivum L.). J. Cereal Sci. 37: 129-137 https://doi.org/10.1006/jcrs.2001.0447
  14. Gale, K. R. 2005. Diagnostic DNA markers for quality traits in wheat. J. Cereal Sci. 41: 181-192 https://doi.org/10.1016/j.jcs.2004.09.002
  15. Gautier, M-F., M-E. Aleman, A Guirano, D. Marion, and P. Joudrier. 1994. Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: eDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 25: 43-57 https://doi.org/10.1007/BF00024197
  16. Gianibelli, M. C, 0. R Larroque, F. MacRitchie, and C. W. Wrigley. 2001. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem. 78: 635-646 https://doi.org/10.1094/CCHEM.2001.78.6.635
  17. Giroux, M. J., and C. F. Morris. 1997. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch surface friabilin, Theor. Appl. Genet. 95: 857-864 https://doi.org/10.1007/s001220050636
  18. Giroux, M. J., and C. F. Morris. 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Nat. Acad. Sci. 95: 6262-6266 https://doi.org/10.1073/pnas.95.11.6262
  19. Giroux, M. J., L. Talbert, D. K. Habemicht, S. Lanning, A. Hemphill, and J.M. Martin. 2000. Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 40: 370-374 https://doi.org/10.2135/cropsci2000.402370x
  20. Graybosch, R. A. 1992. High molecular weight glutenin subunit composition of cultivars, germplasm, and parents of US red winter wheat. Crop Sci. 32: 1151-1155 https://doi.org/10.2135/cropsci1992.0011183X003200050018x
  21. Graybosch, R. A. 1998. Waxy wheats.origin, properties, and prospects, Trends in Food Sci. & Tech. 9: 135-142 https://doi.org/10.1016/S0924-2244(98)00034-X
  22. Graybosch, RA, C. J. Peterson, L. E. Hansen, S. Rahman, A S. Hill, and J. H. Skerritt. 1998. Identification and characterisation of US wheats carrying null alleles at the Wx loci. Cereal Chem. 75: 162-165 https://doi.org/10.1094/CCHEM.1998.75.1.162
  23. Gupta, R B., and F. MacRitchie. 1994. Allelic variation at glutenin subunit and gliadin loci, Glu-I, Glu-B and Gli-I, of common wheats. II. Biochemical basis of the allelic effects on dough properties. J. Cereal Sci. 19: 19-29 https://doi.org/10.1006/jcrs.1994.1004
  24. Gupta, R B., and K. W. Shepherd. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW-GS subunits of glutelin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor. Appl. Genet. 80: 65-74
  25. Gupta, R. B., F. Bekes, and C. W. Wrigley. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats. Cereal Chem. 68: 328-333
  26. Gupta, R B., J. G. Paul, G. B. Cornish, G. A Palmer, F. Bekes, and A. J. Rathjen. 1994. Allelic variation at glutenin subunit and gliadin loci, Glu-I, Glu-S and Gli-I, of common wheats. 1. Its additive and interaction effects on dough properties. J. Cereal Sci.19: 9-17 https://doi.org/10.1006/jcrs.1994.1003
  27. Gupta, R. B., N. K. Singh, and K. W. Shepherd. 1989. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor. Appl. Genet. 77: 57-62 https://doi.org/10.1007/BF00292316
  28. He, Z. H., L. Liu, J. J. Liu, X. C. Xia, and R. J. Pena. 2005. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem. 82: 345-350 https://doi.org/10.1094/CC-82-0345
  29. Hong, B. H., and C. S. Park. 1998. Genetic variation of high molecular weight glutenin (HMW-Glu) subunit in Korea wheat. Korean J. Crop Sci. 43: 259-263
  30. Hyakawa, K., Tanaka, K., Nakamura, T., Endo, S., and Hoshino, T. 1997. Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): Properties of starch gelatinization and retrogradation. Cereal Chem. 74: 576-580 https://doi.org/10.1094/CCHEM.1997.74.5.576
  31. Jackson, E. A, M. H. Morel, T. Sontag-Stronhm, G. Branlard, E. V. Metakovsky, and R. Redaelli, 1996. Proposal for combining the classification systems of alleles of Gli-I and Glu-3 loci in bread wheat (Triticum aestivum L.). J. Genet. & Breed. 50: 321-336
  32. Killermann, B., and G. Zimmermann. 2000. Relationship between allelic variation of Glu-I, Glu-S and Gli-I prolamin loci and baking quality in doubled haploid wheat populations. In: Shewry, P. R and A. S. Thatam (eds), Wheat Gluten. Royal Society of Chemistry, UK. pp. 66-70
  33. Limello, M., and C. F. Morris. 2000. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor. Appl. Genet. 100: 1100-1107 https://doi.org/10.1007/s001220051392
  34. Luo, C., G. B. Griffen, G. Branlard, and D. L. McNeil. 2001. Comparison of low- and high molecular weight wheat glutenin allele effects on flour quality. Theor, Appl. Genet. 102: 1088-1098 https://doi.org/10.1007/s001220000433
  35. Marcoz-Ragot, C., L. Gateau, J. Koenig, V. Delaire, and G. Branlard. 2000. Allelic variants of granule-bound starch synthase proteins in European bread wheat varieties. Plant Breeding 119: 305-309 https://doi.org/10.1046/j.1439-0523.2000.00510.x
  36. Martin, J. M., L. E. Talbert, D. K. Habemicht, S. P. Lanning, J. D. Shennan, G. Carlson, and M. J. Giroux. 2004. Reduced amylose effects on bread and white salted noodle quality. Cereal Chern. 81: 188-193 https://doi.org/10.1094/CCHEM.2004.81.2.188
  37. Martin, J. M., R. C. Frohberg, C. F. Morris, L. E. Talbert, and M. J. Giroux. 2001. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 41: 228-234 https://doi.org/10.2135/cropsci2001.411228x
  38. McLauchlan, A, F. C. Ogbonnaya, B. Hollingsworth, M. Carter, K. R. Gale, R. J. Henry, T. A. Holten, M. K. Morell, L. R. Rampling, P. J. Sharp, M. R. Shariflou, M. G. K. Jones, and R. Appels. 2001. Development of robust-PCR-based DNA markers for each homeo-allele of granule-bound starch synthase and their application in wheat breeding programs. Aust. J Agric. Research. 52: 1409-1416 https://doi.org/10.1071/AR01036
  39. Metakovsky, E. V., C. W. Wrigley, F. Bekes, and R. B. Gupta. 1990. Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Aust. J. Agric. Research 41: 289-306 https://doi.org/10.1071/AR9900289
  40. Miura, H. and S. Tanii, 1994. Endosperm starch properties in several wheat cultivars preferred for Japanese noodle. Euphytica 72: 171-175 https://doi.org/10.1007/BF00034154
  41. Miura, H., M. H. A Wickramasinghe, R. M. Subasinghe, E. Araki, and K. Komae. 2002. Development of near-isogenic lines of wheat carrying different null Wx alleles and their starch properties. Euphytica 123: 53-359
  42. Morita, N., Maeda, T., Miyazaki, M., Yamamori, M., Miura, H., and Ohtsuka, I. 2002. Dough and baking properties of high-amylose and waxy wheat flours. Cereal Chem. 79: 491-495 https://doi.org/10.1094/CCHEM.2002.79.4.491
  43. Morris, C. F. 2002. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Biology 48: 633-647 https://doi.org/10.1023/A:1014837431178
  44. Morris, C. F., M, Lillemo, M. C. Simeone, M. J. Giroux, S. L., Babb, and K. K. Kidwell. 2001. Prevalence of puroindoline grain hardness genotypes among historical significant North American spring and winter wheats. Crop Sci. 41: 218-228 https://doi.org/10.2135/cropsci2001.411218x
  45. Murai, J., T. Taira, and D. Oht. 1999. Isolation and characterisation of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234: 71-79 https://doi.org/10.1016/S0378-1119(99)00178-X
  46. Nakamura, T., M. Yamamori, H. Hirano, and S. Hidaka. 1993. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochemical Genetics 31: 75-86 https://doi.org/10.1007/BF02399821
  47. Nakamura, T., P. Virnten, M. Saito, and M. Konda. 2002. Rapid classification of partial waxy wheats using PCR-based markers. Genome 45: 1150-1156 https://doi.org/10.1139/g02-090
  48. Oda, M., Y. Yasuda, S. Okazaki, Y. Yamauchi, and Y. Yokoyama, 1980. A method of flour quality assessment for Japanese noodles. Cereal Chem. 57: 253-254
  49. Oda, S., K. Komae, and T. Yasui, 1992. Relation between starch granule protein and endosperm softness in Japanese wheat (Triticum aestivum L.) cultivars. Japan. J. Breed. 42: 161-165 https://doi.org/10.1270/jsbbs1951.42.161
  50. Park, C. S., and B-K. Baik. 2004. Cooking time of white salted noodles and it relationship with protein and amylase content of wheat. Cereal Chem. 81: 165-171 https://doi.org/10.1094/CCHEM.2004.81.2.165
  51. Park, C. S., and B-K. Baik. 2007. Characteristics of French bread baked from wheat flours of reduced starch amylose content. Cereal Chem. 84: 437-442 https://doi.org/10.1094/CCHEM-84-5-0437
  52. Park, C. S., B-K. Baik, and B. H. Hong. 2002. Evaluation of bread baking quality of Korean winter wheat over years and locations. Korean J. Crop Sci. 47: 13-20
  53. Park, C. S., B-K. Baik, M. S. Kang, J. C. Park, J. G. Kim, C. Y. Yu, M. G. Cheung, and J. D. Lim. 2006. Flour characteristics and end-use quality of Korean wheats with 1Dx2.2+1Dy12 subunits in high molecular weight glutenin. J. Food Sci. Nutr. 11: 243-252 https://doi.org/10.3746/jfn.2006.11.3.243
  54. Park, C. S., Y. K. Kim, O. K. Han, M. J. Lee, J. C. Park, J. H. Seo, J. J. Hwang, J. G. Kim, and T. W. Kirn. 2005. Characteristics of biochemical markers and whole-wheat flours using small-scaled sampling methods in Korean wheats. Korean J. Crop Sci. 50: 346-355
  55. Payne, P. I., and G. J. Lawrence. 1983. Catalogue of alleles for the complex gene loci, Glu-AI, Glu-BI and Glu-DI which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11: 29-35
  56. Payne, P. I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Ann. Rev. Plant Physiol. 38: 141-153 https://doi.org/10.1146/annurev.arplant.38.1.141
  57. Payne, P. I., J. A Seekings, A J. Worldland, M. G. Javis, and L. M. Holt. 1987a. Allelic variation of glutenin subunits and gliadins and its effect on bread making quality in wheat: Analysis of F5 progeny from Chinese Spring x Chinese Spring (Hope 1A). J. Cereal. Sci. 6: 103-118 https://doi.org/10.1016/S0733-5210(87)80047-4
  58. Payne, P. I., L. M. Holt, and G. J. Lawrence. 1983. Detection of a novel high molecular weight subunit of glutenin in some Japanese wheats. J. Cereal. Sci. 1: 3-8 https://doi.org/10.1016/S0733-5210(83)80003-4
  59. Payne, P. I., M. A Nightingale, A F. Krattiger, and L. M. Holt. 1987b. The relationship between HMW glutenin subunit composition and bread-making quality of British- grown wheat varieties. J. Sci.Food. Agric. 40: 51-65 https://doi.org/10.1002/jsfa.2740400108
  60. Pena, R. J., H. Gonzalez-Santoyo, and F. Cervantes. 2004. Relationship between Glu-D1/Glu-B3 allelic combinations and bread-making quality-related parameters commonly used in wheat breeding. In: . Lafiandra, D., S. Masci, and R. D'Ovidio. (eds). The Gluten Proteins. Royal Society of Chemistry Royal Society of Chemistry, UK. pp. 156-159
  61. Pomeranz, Y., and P. C. Williams. 1990. Wheat hardness: its genetic, structural and biochemical background, measurement and significance. In: Advances in Cereal Science and Technology Vol. 10. American Association of Cereal Chemists Inc., St. Paul, MN. USA. pp. 471-544
  62. Primard, S., R. Graybosch, C. J. Peterson, and J. H. Lee. 1991. Relationships between gluten protein composition and end-use quality in four populations of high protein hard red winter wheat. Cereal Chem. 68: 305-312
  63. Redaelli, R., P. K W. Ng, and N. E. Pogna. 1997. Allelic variation at the storage protein loci of 55 US-grown white wheats. Plant Breeding 116: 429-436 https://doi.org/10.1111/j.1439-0523.1997.tb01026.x
  64. Sasaki, T., Yasui, T., and Matsuki, J. 2000. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 77: 58-63 https://doi.org/10.1094/CCHEM.2000.77.1.58
  65. Seib, P. A. 2000. Reduced-amylose wheats and Asian noodles. Cereal Foods World 45: 504-512
  66. Shan, X., S. R. Clayshulte, S. D. Haley, and P. F. Byrne. 2007. Variaition for glutenin and waxy alleles in the US hard winter wheat germplam. J. Cereal Sci. 45: 199-208 https://doi.org/10.1016/j.jcs.2006.09.007
  67. Shariflou, M. R., M. E. Hassani, and P. 1. Sharp. 2001. A PCR-based DNA marker for detection of mutant and normal alleles of the Wx-Dl gene of wheat. Plant Breeding 120: 121-124 https://doi.org/10.1046/j.1439-0523.2001.00577.x
  68. Shewry, P. I., N. G. Halford, and A. S. Tatham. 1992. High molecular weight subunits of wheat glutenin. J. Cereal Sci. 15: 105-120 https://doi.org/10.1016/S0733-5210(09)80062-3
  69. Singh, N. K, and K. W. Shepherd. 1988. Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group-l chromosomes. Theor. Appl. Genet. 75: 628-641 https://doi.org/10.1007/BF00289132
  70. Singh, N. K., K. W. Sheperd, and G. B. Cornish. 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 14: 203-208 https://doi.org/10.1016/S0733-5210(09)80039-8
  71. Symes, K. J. 1965. The inheritance of grain hardness in wheat as measured by the particle size index. Aust. J Agric. Research. 16: 113-123 https://doi.org/10.1071/AR9650113
  72. Vawser, M., G. B. Cornish, and K W. Shepherd. 2002. Rheological dough properties of Aroona isolines differing on glutenin subunit composition. In: Black, C. K, J. F. Panozzo, C. W. Wrigley, I. L. Batey, and N. Larsen (eds), Cereals 2002: 52nd Aust. Cereal Chem.. Conf. Royal Australian Chemical Institute, Melbourne. Australia. pp. 53-58
  73. Zhao, X. C, I. L. Batey, P. J. Sharp, G. Crosbie, I., Barclay, R., Wilson, M. K, Morel, and R. Appels. 1998. A single genetic locus associated with starch granule properties and noodle quality in wheat. J. Cereal Sci. 27: 7-13 https://doi.org/10.1006/jcrs.1997.0145