Dependence of $O_2$ Plasma Treatment of Cross-Linked PVP Insulator on the Electrical Properties of Organic-Inorganic Thin Film Transistors with ZnO Channel Layer

  • Gong, Su-Cheol (Department of Electronics and Computer Engineering, Dankook University) ;
  • Shin, Ik-Sup (Department of Electronics and Computer Engineering, Dankook University) ;
  • Bang, Suk-Hwan (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyun-Chul (Department of Materials Science and Engineering, Yonsei University) ;
  • Ryu, Sang-Ouk (Department of Electronics and Computer Engineering, Dankook University) ;
  • Jeon, Hyeong-Tag (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University) ;
  • Yu, Chong-Hee (Electronics and Telecommunications Research Institute) ;
  • Chang, Ho-Jung (Department of Electronics and Computer Engineering, Dankook University)
  • Published : 2009.06.30

Abstract

The organic-inorganic thin film transistors (OITFTs) with ZnO channel layer and the cross-linked PVP (Poly-4-vinylphenol) gate insulator were fabricated on the patterned ITO gate/glass substrate. ZnO channel layer was deposited by using atomic layer deposition (ALD). In order to improve the electrical properties, $O_2$ plasma treatment onto PVP film was introduced and investigated the effect of the plasma treatments on the electrical properties of the OITFTs. The field effect mobility and sub-threshold slope (SS) values of the OITFT decreased slightly from 0.24 to 0.16 $cm^2/V{\cdot}s$ and from 9.7 to 9.2 V/dec, respectively with increasing RF power from 30 to 50 Watt. The $I_{on/off}$ ratio was about $10^3$ for all samples with $O_2$ plasma treatment.

Keywords

References

  1. J. A. Rogers, Z. Bao, J. Polym. Sci. Part A: Polym. Chem., Vol. 40, p. 3327 (2002). https://doi.org/10.1002/pola.10405
  2. T. W. Kelly, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel, S. D. Theiss, Chem. Mat., Vol. 16, p. 4413 (2004). https://doi.org/10.1021/cm049614j
  3. E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, R. Martins, Thin Solid Films, Vol. 487, p. 205-211 (2005). https://doi.org/10.1016/j.tsf.2005.01.066
  4. R. H. Tredgold, Order in Thin Organic Films, Cambridge University Press (1994).
  5. R. F. Gould (Ed.), Contact Angle, Wettability and Adhesion, Proceeding of the 144th Meeting of the American Chemical Society, Vol. 43, Washington, DC (1964).
  6. J. G Jang, M. H. Oh, H. J. Chang, Y. S. Kim, J. Y. Lee, M. S. Gong, Y. K. Lee, J. Microelectron Packaging Soc., Vol. 13, No.1, p. 37 (2006).
  7. I. S. Shin, S. C. Gong, H. S. Lim, H. H. Park, H. J. Chang, J. Microelcctron Packaging Soc., Vol. 14, No.1, p. 27 (2007)
  8. H. T. Lu, M. Yokoyama, J. Cryst. Growth, Vol. 260, p. 186 (2004). https://doi.org/10.1016/j.jcrysgro.2003.08.032
  9. B. S. Lee, Y. S. Yu, J. C. Lee, DJ. Hur and HJ. Cho, Hankook Kwanghak Hoeji, Vol. 18, p. 452 (2007). https://doi.org/10.3807/HKH.2007.18.6.452
  10. D. Ross, J. E. Rutledge, P. Taborek, Science, Vol. 278, p. 664 (1997).
  11. M. Nakahara, K. Ozawa, Y. Sanada, J. Mater. Sci., Vol. 29, p. 1646 (1994). https://doi.org/10.1007/BF00368939
  12. S. C. Lim, S. H. Kim, J. H. Lee, M. K. Kim, D. J. Kim, T. Zyung, Synthetic Metals, Vol. 148, p. 75 (2005). https://doi.org/10.1016/j.synthmet.2004.08.034
  13. G N. Taylor, T. M. Wolf, Polymer Engineering and Science, Vol. 20, issue 16, p. 1087 (2009).
  14. M. R. Sanchis, V. Blans, D. Garcia, R. Balart, European Polymer Journal, Vol. 42, p. 1558 (2006). https://doi.org/10.1016/j.eurpolymj.2006.02.001
  15. T. Khan, D. Vasileska and T. J. Thornton, J. Vac. Sci. Technol.B, Vol. 23, p. 1782 (2005). https://doi.org/10.1116/1.1949220