Daily Travel Pattern using Public Transport Mode in Seoul:An Analysis of a Multi-Dimensional Motif Search

핵심정보배열 추출에 의한 서울시 대중교통 통행패턴 분석

  • Published : 2009.06.30

Abstract

Transportation policy to facilitate the public mode use is of the foremost importance to the local governments of Metropolitan Seoul, regarding the economic and environmental consequences of the increasing use of car. Understanding the travel behaviour is essential to the establishment of proper policy to guide more people to the use of public modes instead of private. The paper reports a result of sequential analysis of individual travel behaviour in Metropolitan Seoul, using a multi-dimensional motif search technique applied to Smart Card data that integrates individuals' different public mode uses. Groups of travel patterns with similar sequential information identified distinctive travel behaviour between Seoul north and south and between metro and bus uses. Travel patterns are more bounded within north Seoul and south Seoul respectively than crossing Han River between north and south. Within north and south, travel patterns visiting northern CBD and southern CBD, respectively, as well as their local neighbour in north and south, often use metro and metro-local bus combination, while travel patterns visiting only the north and south locals without CBDs more use only the local bus line and even only the areal bus line.

경제적, 환경적 이유에서, 승용차 이용을 억제하고 대중교통수단 분담율을 제고하는 교통정책은 수도권 지자체에게 있어 매우 중요한 과제이다. 통행행태를 근본적으로 이해하는 것은 이러한 정책의 수립과 집행에 매우 중요한 필요조건이다. 소규모 샘플자료를 이용, 특정한 통행 행태와 몇몇의 사회경제적 혹은 지리공간적 변수들 간의 상관관계에 대한 횡단면적 분석을 행하는 것이 이 분야 전통적인 연구주제였다. 연구결과는 스냅샷과 유사한, 시공간적으로 제한된 정보만을 제공한다. 그러나, 통행은 공간적으로 상이한 장소에서 벌어지는 일상활동 참여로부터 파생되며, 일상 활동계획 상에서의 활동-통행 간 순서 관계는 통행 행태의 중요한 틀이다. 본 연구는 다차원 정보배열비교법과 핵심정보배열추출기법을 이용, 서울시민의 일일 대중교통 이용 자료인 스마트 카드 자료를 분석하여 서울시내 대중교통 이용 행태의 일반 특성을 탐구한다. 분석 결과 서울 강남/북 간 버스-전철 연계통행과 간선버스 통행간 통행 행태의 중요한 차이를 확인할 수 있었다. 즉 통행패턴은 보통 강북과 강남 권역 안에서 형성이 되어 있어, 자연 장애물인 한강을 건너 강남/북을 가로지르는 통행패턴은 상대적으로 적었다. 또한 강북과 강남 각각의 권역 안에서 CBD를 들르는 통행패턴은 보통 전철 혹은 지선버스-전철의 연계교통수단을 이용하는 데 반해 지선버스 혹은 간선버스만을 이용하는 통행패턴은 CBD가 아닌 지역으로 목적지가 국한되는 경향이 있다.

Keywords

References

  1. Bargeman, B., Joh, C. H., and Timmermans, H. J. P., 2002, A typology of tourist vacation behavior using a sequence alignment method, Annals of Tourism Research, 29, 320-337 https://doi.org/10.1016/S0160-7383(01)00065-2
  2. Hanson, S., 2004, Getting there, in Hanson, S. (ed.), Geography of Urban Transportation, Guilford Press, 3-18
  3. Hay, B., 2003, SAM heuristic, Sequence Alignment Methods in Web Usage Mining, Ph.D. Thesis, LUC, 299-330
  4. Hay, B. H., Wets, G., and Van Hof, K., 2004, Mining navigation patterns using a sequence alignment method, Knowledge and Information Systems, 6, 150-163 https://doi.org/10.1007/s10115-003-0109-6
  5. Joh, C. H., Kim, C. S., and Sung, H. M., 2008, An activitybased analysis of heavy-vehicle trip chains, Journal of the Economic Geographical Society of Korea, 11, 192-202. (in Korean)
  6. Joh, C. H., Arentze, T. A., and Timmermans, H. J. P., 2008, Improved motif identification of activity sequences: application to interactive computer experiment data, Transportation Research Record, 2054, 93-101 https://doi.org/10.3141/2054-11
  7. Joh, C. H., Arentze, T. A., Hofman, F., and Timmermans, H. J. P., 2002, Activity pattern similarity: a multidimensional alignment method, Transportation Research B, 36, 385-403 https://doi.org/10.1016/S0191-2615(01)00009-1
  8. Joh, C. H., Popkowski, P., and Timmermans, H. J. P., 2003, Identifying purchase-history sensitive shopper segments using scanner panel data and sequence alignment methods, Journal of Retailing and Consumer Services, 10, 135-144 https://doi.org/10.1016/S0969-6989(03)00005-5
  9. Kemperman, A., Joh, C. H., and Timmermans, H. J. P., 2004, Comparing first-time and repeat visitors’ activity patterns in a tourism environment, Tourism Analysis, 8, 159-164 https://doi.org/10.3727/108354203774076661
  10. McClure, M. A., Vasi, T. K., and Fitch, W. M., 1994, Comparative analysis of multiple protein sequence alignment methods, Molecular Biology and Evolution, 11, 571-592
  11. Lee, B. J. and Oh, S. H., 2008, User-oriented information services of public transportation, Transportation Technology and Policy, 5(3), 132-135. (in Korean)
  12. Recker, W., Duan, J., and Wang, H., 2008, Development of an estimation procedure for an activity-based travel demand model, Computer? Aided Civil and Infrastructure Engineering, 23, 483-501 https://doi.org/10.1111/j.1467-8667.2008.00555.x
  13. Rindsfuser, G., Mühlhans, H., Doherty, S. T., and Beckmann, K. J., 2003, Tracing the planning and execution of activities and their attributes: design and application of a hand-held scheduling process survey, in Proceedings of the $10^{th}$ International Conference on Travel Behaviour Research, Lucerne, Switzerland
  14. Roberts, I., 2003, Car wars, http://www.guardian.co.uk/ world/2003/jan/18/iraq.usa
  15. Roorda, M. J., Doherty, S. T., and Miller, E. J., 2005, Operationalising household activity scheduling models, in Lee-Gosselin, M., and Doherty, S. T. (eds.), Integrated Land-Use and Transportation Models: Behavioural Foundations, Elsevier, Oxford
  16. Shin, S. I., Lee, C. J., and Cho, Y. C., 2008, A methodology to evaluate regional public transportation services using public transport use data, Transportation Technology and Policy, 5(1), 111-127. (in Korean)
  17. Shoval, N. and Isaacson, M., 2007, Sequence alignment as a method for human activity analysis in space and time, Annals of the Association of American Geographers, 97, 282-297 https://doi.org/10.1111/j.1467-8306.2007.00536.x
  18. Timmermans, H. J. P., Arentze, T. A., and Joh, C. H., 2002, Analyzing space-time behavior: new approaches to old problems, Progress in Human Geography, 26, 175-190 https://doi.org/10.1191/0309132502ph363ra
  19. Wilson, C., 1998, Activity-travel pattern analysis by means of sequence alignment methods, Environment and Planning A, 30, 1017-1038 https://doi.org/10.1068/a301017
  20. Wilson, C., 2006, Reliability of sequence-alignment analysis of social processes: Monte Carlo tests of ClustalG software, Environment and Planning A, 38, 187-204 https://doi.org/10.1068/a3722