Estimating Air Temperature over Mountainous Terrain by Combining Hypertemporal Satellite LST Data and Multivariate Geostatistical Methods

초단주기 지표온도 위성자료와 다변량 공간통계기법을 결합한 산지 지역의 기온 분포 추정

  • Park, Sun-Yurp (Department of Geography and Environmental Studies, University of Hawaii-Hilo)
  • 박선엽 (하와이대학교-힐로 지리학과)
  • Published : 2009.06.30

Abstract

The accurate official map of air temperature does not exist for the Hawaiian Islands due to the limited number of weather stations on the rugged volcanic landscape. To alleviate the major problem of temperature mapping, satellite-measured land surface temperature (LST) data were used as an additional source of sample points. The Moderate Resolution Imaging Spectroradiometer (MODIS) system provides hypertemperal LST data, and LST pixel values that were frequently observed (${\ge}$14 days during a 32-day composite period) had a strong, consistent correlation with air temperature. Systematic grid points with a spacing of 5km, 10km, and 20km were generated, and LST-derived air temperature estimates were extracted for each of the grid points and used as input to inverse distance weighted (IDW) and cokriging methods. Combining temperature data and digital elevation model (DEM), cokriging significantly improved interpolation accuracy compared to IDW. Although a cokriging method is useful when a primary variable is cross-correlated with elevation, interpolation accuracy was sensitively influenced by the seasonal variations of weather conditions. Since the spatial variations of local air temperature are more variable in the wet season than in the dry season, prediction errors were larger during the wet season than the dry season.

지형 굴곡이 심한 하와이 화산섬의 경우, 측후소 분포가 매우 제한적이어서 공식적인 기온 분포도가 작성되지 못하고 있는 실정이다. 본 연구에서는 이러한 기온 지도화의 문제점을 해결하는 방법으로 위성기반의 지표온도 자료로부터 기온추정치를 추출하여 내삽법에 필요한 입력자료로 사용하였다. 추출된 온도값을 표본값으로하여 거리 역비례 가중치법(IDW)과 공동크리깅 (cokriging)을 적용하여 기온추정치를 지도화하였다. 기온과 고도값을 함께 이용한 cokriging이 IDW에 비해 크게 향상된 추정 오차값을 나타내었다. Cokriging은 주 변수와 고도와 같은 추가 변수 간의 상관관계가 유의하게 나타날 때 효과적으로 사용되는 내삽법이지만, 내삽 정확도는 계절적인 기상조건에 민감하게 영향받는 것으로 조사되었다. 강수량이 크게 증가하는 우기에는 건기에 비해 공간적인 기온변화가 크며, 이에 따라 기온 추정 오차값도 우기에 높게 나타났다.

Keywords

References

  1. Barnes, W. L., Pagano, T. S., and Salomonson, V. V., 1998, Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) in EOS-AM1, IEEE Transactions on Geoscience and Remote Sensing, 36, 1088-1100 https://doi.org/10.1109/36.700993
  2. Barry, R. G. and Chorley, R. J., 1987, Atmosphere, Weather and Climate, Routledge, London
  3. Daly, C., Nelson, R. P., and Phillips, D. L., 1994, A statistical-topographic model for mapping climatological precipitation over mountainous terrain, Journal of Applied Meteorology, 33, 140- 158 https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  4. Daly, C., Helmer, E. H., and Quiñones, M., 2003, Mapping the climate of Puerto Rico, Vieques and Culebra, International Journal of Climatology, 23, 1359-1381 https://doi.org/10.1002/joc.937
  5. Declercq, F. A. N., 1996, Interpolation methods for scattered sample data: accuracy, spatial patterns, processing time, Cartography and Geographic Information Systems, 23, 128-144 https://doi.org/10.1559/152304096782438882
  6. Giambelluca, T. W. and Nullet, D., 1991, Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaii, Climate Research, 1, 207-216 https://doi.org/10.3354/cr001207
  7. Goovaerts, P., 2000, Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, Journal of Hydrology, 228, 113-129 https://doi.org/10.1016/S0022-1694(00)00144-X
  8. Havesi, A. J., Flint, A. L., and Istok, J. D., 1992, Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: isohyetal maps, Journal of Applied Meteorology, 31, 677- 688 https://doi.org/10.1175/1520-0450(1992)031<0677:PEIMTU>2.0.CO;2
  9. Ishida, T. and Kawashima, S., 1993, Use of cokriging to eastimate surface air temperature from elevation, Theoretical and Applied Climatology, 47, 147- 157 https://doi.org/10.1007/BF00867447
  10. Issaks, E. H. and Srivastava, R. M., 1989, An Introduction to Applied Geostatistics, Oxford University Press, Oxford
  11. Jarvis, C. H., Stuart, N., and Cooper, W., 2003, Informetric and statistical diagnostics to provide artificially-intelligent support for spatial analysis: the example of interpolation, International Journal of Geographical Information Science, 17, 495-516 https://doi.org/10.1080/1365881031000114099
  12. Justice, D. H., Salomonsonm, V., Privette, J., Riggs, G., Strahler, A., Lucht, R., Myneni, R., Knjazihhin, Y., Running, S., Nemani, R., Vermte, E., Townsend, J., Dfries, R., Roy, D., Wan, Z., Huete, A., Leeuwen van, R., Wolfe, R., Giglio, L., Muller, J. P., Lewis, P., and Barnsley, M., 1998, The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research, IEEE Transactions on Geoscience and Remote Sensing, 36, 1228-1249 https://doi.org/10.1109/36.701075
  13. Kaufman, Y. J., Herring, D. D., Ranson K. J., and Collatz, G. J., 1998, Earth observing system AM1 mission to earth, IEEE Transactions on Geoscience and Remote Sensing, 36, 1045-1055 https://doi.org/10.1109/36.700989
  14. Lull, H. W. and Ellison, L., 1950, Precipitation in relation to altitude in central Utah, Ecology, 31, 479-484 https://doi.org/10.2307/1931507
  15. Martinez-Cob, A. and Cuenca, R. H., 1992, Influence of elevation on regional evapotranspiration using multivariate geostatistics for various climatic regimes in Oregon, Journal of Hydrology, 136, 353-380 https://doi.org/10.1016/0022-1694(92)90018-Q
  16. Martinez-Cob, A., 1996, Multivariate geostatistical analysis of evaportranspiration and precipitation in mountainous terrain, Journal of Hydrology, 174, 19-35 https://doi.org/10.1016/0022-1694(95)02755-6
  17. Nullet, D., Juvik, J. O., and Wall, A., 1995, A Hawaiian mountain climate cross-section, Climate Research, 5, 131-137 https://doi.org/10.3354/cr005131
  18. Nullet, D. and Sanderson, M., 1995, Radiation and energy balances and air temperature, in Sanderson, M. (eds.), Prevailing Trade Winds- Weather and Climate in Hawaii, University of Hawaii Press, Honolulu, 37-55
  19. Park, N. and Jang, D., 2008, Mapping of temperature and rainfall using DEM and multivariate kriging, Journal of the Korean Geographical Society, 43, 1002-1015
  20. Phillips, D. L., Dolph, J., and Marks, D., 1992, A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain, Agricultural and Forest Meteorology, 58, 119-141 https://doi.org/10.1016/0168-1923(92)90114-J
  21. Schroeder, T., 1995, Climate controls, in Sanderson, M. (ed.), Prevailing Trade Winds-Weather and Climate in Hawaii, University of Hawaii Press, Honolulu, 12-36
  22. Slocum, T. A., McMaster, R. B., Kessler, F. C., and Howard, H. H., 2009, Thematic Cartography and Geovisualization, Prentice Hall, Upper Saddle River, 286-287
  23. Vitousek, P. M., Aplet, G., and Turner, D., 1992, The Mauna Loa environmental matrix: foliar and soil nutrients, Oecologia, 89, 372-382 https://doi.org/10.1007/BF00317415
  24. Webster, R. and Oliver, M. A., 2001, Geostatistics for Environmental Sciences, Wiley, Chichester
  25. Zimmerman, D., Pavlik, C., Ruggles, A., and Armstrong, M. P., 1999, An experimental comparison of ordinary and universal kriging and inverse distance weighting, Mathematical Geology, 31, 375-390 https://doi.org/10.1023/A:1007586507433