동양배 '신고'와 '사과배' 과실의 저장 중 세포벽 특성의 변화 비교

Comparison of Changes in Cell Wall Characteristics during Storage in 'Niitaka' and 'Pingguoli' Pear Fruits

  • 김진국 (충남대학교 식물자원학부 원예학전공) ;
  • 박일룡 (연변대학교 농학부 원예학전공) ;
  • 천종필 (충남대학교 식물자원학부 원예학전공) ;
  • 카타오카이쿠오 (카가와대학교 농학부 생물자원생산학전공) ;
  • 황용수 (충남대학교 식물자원학부 원예학전공)
  • Kim, Jin-Gook (Department of Horticulture, Chungnam National University) ;
  • Piao, Yilong (Agricultural College of Yanbian University) ;
  • Chun, Jong-Pil (Department of Horticulture, Chungnam National University) ;
  • Kataoka, Ikuo (Faculty of Agriculture, Kagawa University) ;
  • Hwang, Yong-Soo (Department of Horticulture, Chungnam National University)
  • 투고 : 2009.03.11
  • 심사 : 2009.06.03
  • 발행 : 2009.06.30

초록

동양배 '신고'와 '사과배'의 저장기간 중 서로 다른 생리적 특성과 세포벽 특성 변화를 비교 검토하여 과실생리 및 저장기술의 기초자료로 얻고자 본 실험을 실시하였다. 저장 기간 중 '신고'의 품질변화는 중량감소가 큰 반면, '사과배'에서는 급격한 호흡급등현상과 에틸렌 생합성이 많았으며, 전분감소가 컸다. 수용성 펙틴함량은 '신고'가 '사과배'보다 높았으며 CDTA-가용성 펙틴은 두 품종간의 차이가 크지 않았다. $Na_2CO_3$-가용성 펙틴은 '사과배'가 '신고'보다 높았으며 수용성 펙틴과는 달리 저장 기간이 길어질수록 증가하였다. 4% 및 24% KOH 가용성 펙틴은 저장기간에 따른 변화 폭이 크지 않았다. 수용성 펙틴의 분획 결과,'신고'와 '사과배' 저장 중 거대 분자의 구조 변화에서 많은 차이를 보였고, '신고'와 '사과배' 모두 저장 기간이 길어질수록 펙틴의 가수분해 및 측쇄 사슬의 당 분해가 관찰되었다. $Na_2CO_3$-가용성 펙틴의 경우 당 분포는 저장 기간에 관계없이 일정하였지만 펙틴은 분자량 변화가 컸다. 4% 및 24% KOH 가용성 펙틴의 분획 결과 두 품종에 있어 헤미셀룰로스의 구조 변화가 서로 달라, '사과배'의 경우는 4% KOH 가용성 추출물의 분획에서 세포벽을 구성하고 있는 당들의 가수분해가 컸으며 '신고' 보다 '사과배'에서 노화 과정 중 헤미셀룰로스의 변화가 더 심하였다.

The characteristics of fruit ripening and cell wall modifications of two oriental pear fruits were compared during storage. The loss of fresh weight was lower in 'Pingguoli' than 'Niitaka', probably due to the difference in wax accumulation and skin structure. 'Pingguoli' produced much higher amount of ethylene and showed climacteric ripening pattern, but this response was not found in 'Niitaka'. A significant difference in soluble pectin contents was found, thus, the amount of water soluble pectins were much higher in 'Niitaka' at harvest but this difference was not significant at later stage of storage. A severe loss of water soluble pectins in 'Niitaka' was confirmed whereas a similar tendency was not found in CDTA soluble ones. Even the amount of $Na_2CO_3$ soluble pectins was relatively low, 'Pingguoli' contained approximately 2 times higher than 'Niitaka' and both cultivars showed an increasing tendency in $Na_2CO_3$ soluble polymers at later stage of storage. No significant difference in alkali soluble polysaccharides (hemicelluloses fraction) was found between both cultivars. There was a significant change in gel filtration profiles regardless of cultivars, especially in water soluble pectins resulting from severe depolymerization probably due to degradation of higher molecular weight pectins and loss of their side chains. In gel filtration profiles of $Na_2CO_3$ soluble pectins, neutral sugars were evenly distributed regardless of molecular size of pectic polymers but the decrease of high molecular weight fraction was found. In comparison of alkali soluble polymers, a similar trend was found, that is, there was no difference in gel filtration profiles but 'Niitaka' seemed to have longer side chains in alkali soluble polysaccharides in both 4% and 24% of KOH soluble fractions.

키워드

참고문헌

  1. Ahmed, A.E. and J.M. Labavitch. 1980. Cell wall metabolism in ripening fruit. I. Cell wall changes in ripening 'Bartlett' pears. Plant Physiol. 65:1009-1013. https://doi.org/10.1104/pp.65.5.1009
  2. Alexander, L. and D. Grierson. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Expt. Bot. 53:2039-2055 https://doi.org/10.1093/jxb/erf072
  3. Bartley, I.M. 1976. Changes in the glucans of ripening apples. Phytochemistry 13:2107-2111. https://doi.org/10.1016/0031-9422(74)85011-9
  4. Blumenkrantz, N. and G. Asboe-Hanson. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54:484-489. https://doi.org/10.1016/0003-2697(73)90377-1
  5. Brady, C.J. 1987. Fruit ripening. Ann. Rev. Plant Physiol. 38:155-178. https://doi.org/10.1146/annurev.arplant.38.1.155
  6. Campbell, A.D., M. Huysamer, H.U. Stotz, L.C. Greve, and J.M. Labavitch. 1990. Comparison of ripening processes in intact tomato fruit and excised pericarp discs. Plant Physiol. 94:1582-1589. https://doi.org/10.1104/pp.94.4.1582
  7. Cheng, G.W. and D.J. Huber. 1996. Alterations in structural polysaccharides during liquefaction of tomato locule tissue. Plant Physiol. 111:447-457. https://doi.org/10.1104/pp.111.2.447
  8. Chun, J.P., F. Tamura, K. Tanabe, A. Itai, and T. Tabuchi. 2003. Cell wall degradation and structural changes of GA-induced watercored tissues in Japanese pear 'Akibae' and 'Housui'. J. Japan. Soc. Hort. Sci. 72:488-496. https://doi.org/10.2503/jjshs.72.488
  9. Dubois, M.K.A., J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  10. Fisher, R.L. and A.B. Bennett. 1991. Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:675-703. https://doi.org/10.1146/annurev.pp.42.060191.003331
  11. Fishman, M.L., K.C. Gross, D.T. Gillespie, and S.M. Sondey. 1989. Macromolecular components of tomato fruit pectin. Arch. Biochem. Biophys. 274:179-191. https://doi.org/10.1016/0003-9861(89)90429-3
  12. Gross, K.C. 1982. A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide. HortScience. 17:933-934.
  13. Huber, D.J. 1983. Polyuronide degradation and hemicellulose modification in ripening tomato fruit. J. Amer. Soc. Hort. Sci. 108:405-409
  14. Itai, A., T. Kawata, K. Tanabe, T. Tamura, M. Uchiyama, M. Tomomitsu, and N. Shiraiwa. 1999. Identification of 1-aminocyclopropane -1-carboxylic acid synthase genes controlling the ethylene level of rieping fruit in Japanese pear (PyruspyrifoliaNakia). Mol. Gen. Genet. 261:42-49. https://doi.org/10.1007/s004380050939
  15. Lieberman, M. 1979. Biosynthesis and action of ethylene. Ann. Rev. Plant physiol. 30:533-591 https://doi.org/10.1146/annurev.pp.30.060179.002533
  16. Maclachlan, G. and C. Brady. 1992. Multiple forms of 1,4-$\beta$-glucanase in ripening tomato fruit include a xyloglucanase activatable by xyloglucan oligosaccharides. Aust. J. Plant Physiol. 19:137-146. https://doi.org/10.1071/PP9920137
  17. Maclachlan, G. and C. Brady. 1994. Endo-1,4-$\beta$-glucanase and xyloglucan endo-transglycosylase activities versus potential substrate in ripening tomatoes. Plant Physiol. 105:965-974. https://doi.org/10.1104/pp.105.3.965
  18. McCollum, T.G., D.J. Huber, and D.J. Cantliffe. 1989. Modification of polyuronides and hemicelluloses during muskmelon fruit softening. Physiol. Plant. 76:303-308. https://doi.org/10.1111/j.1399-3054.1989.tb06195.x
  19. Morries, E.R., D.A. Powell, M.J. Gidley, and D.A. Rees. 1982. Conformations and interactions of pectins. I. Polymorphism between gel and solid states of calcium polygalactunates. J. Mol. Biol. 155:507-516. https://doi.org/10.1016/0022-2836(82)90484-3
  20. Pesis, E., Y. Fuchs. and G. Zauberman. 1978. Cellulase activity and fruit softening in avocado. Plant Physiol. 61:416-419. https://doi.org/10.1104/pp.61.3.416
  21. Piao, Y.L. 2002. Comparison of physiological and biochemical changes during storage between 'Pingguoli' and 'Niitaka' pear fruits. PhD Thesis. Chungnam National University.
  22. Piao, Y.L., J.P. Chun, and Y.S. Hwang. 2003. Comparison of physiological characteristics during storage between 'Pingguoli' and 'Niitaka' pear fruits. J. Kor. Soc. Hort. Sci. 44:489-492.
  23. Seymour, G.B., I.J. Colqhoun, M.S. Dupont, K.R. Parsley, and R.R. Selvendran. 1990. Composition and structural features of cell wall polysaccharides from tomato fruits. Phytochemistry 29:725-731. https://doi.org/10.1016/0031-9422(90)80008-5
  24. Tong, C.B. and K.C. Gross. 1989. Ripening characteristics of a tomato mutant, dark green. J. Amer. Soc. Hort. Sci. 114:635-638.