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STICK NUMBER OF THETA-CURVES

Youngsik Huh and Seungsang Oh

Abstract. In this paper we establish strict lower bounds on number
of sticks necessary to construct stick presentations of nontrivial or almost
trivial θ-curves.

1. Introduction

A knot is a simple closed curve embedded into R3. Two knots K and
K ′ are said to be equivalent, if there exists an orientation preserving
homeomorphism of R3 which maps K to K ′, or to say roughly, K ′ is
obtained from K by continuous moves without intersecting any strand
of the knot. And the equivalence class of K is called the knot type of K.
A knot is said to be trivial, if it is equivalent to another knot contained
in a plane of the 3-space.

One natural way to represent knots is the stick presentation. A stick
knot is a knot which consists of finite line segments, called sticks. Figure
1 shows the right-handed trefoil knot 31 and one of its stick presentations.
The stick number s(K) of a knot K is defined to be the minimal number
of sticks for construction of the knot type into a stick knot. It is known
that s(31) = s(3∗1) = 6, where 3∗1, called left-handed trefoil, is the mirror
image of 31 [5, 7]. Since this presentation of knots has been considered to
be a useful mathematical model of cyclic molecules or molecular chains,
the stick number may be one of intrinsic properties which are interested
not only in knot theory of mathematics, but also in biology, chemistry
and physics. In general it is not easy to determine s(K) precisely for
arbitrary knot K. Numerous researches on this quantity have been done
through experimental simulation using computer. But there are some
literatures in which the range of s(K) was theoretically investigated and
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the quantity was determined precisely for some specific knots [1, 2, 4, 6,
7]. The following is one of the most elementary results on stick number.

Theorem 1. [5, 8]
If K is a nontrivial knot, then s(K) ≥ 6. Furthermore, if s(K) = 6, then
K is 31 or 3∗1.

Note that an embedded graph in R3 consisting of sticks is also a usual
model of molecules. Therefore it would be interesting to investigate its
stick number. In this paper we investigate the stick number of θ-curves.

The θ-graph is the graph consisting of two vertices and three edges
between them as seen in Figure 2. And a θ-curve is an embedding of
the graph into R3. The equivalence, triviality and stick presentation of
θ-curves can be defined in the same way as knots. The θ-graph contains
three cycles. Therefore a θ-curve contains three knots as its subspace
which are called subknots. A nontrivial θ-curve is said to be almost
trivial, if every subknot is trivial. For example see Figure 2. The θ-
curve TK, called Kinoshita’s θ-curve, is almost trivial [9]. On contrary
TT is not almost trivial because it contains a trefoil knot as its subknot.
The theorem below is the main result of this paper.

Theorem 2. For any nontrivial θ-curve T , s(T ) ≥ 7. Furthermore,
if T is almost trivial, then s(T ) ≥ 8.

Figure 3 shows stick presentations of TT and TK each of which consists
of 7 and 8 sticks respectively. Therefore our inequalities in the theorem
are best possible. And we have that s(TT ) = 7 and s(TK) = 8 as a
corollary.

The rest of this paper is devoted to the proof of Theorem 2.

Remark. In a stick knot or stick θ-curve, a boundary point of any
stick will be called a vertex of the stick presentation. This terminol-
ogy should be distinguished from a vertex of a graph. Regarding stick
presentation as a model for molecules, it is considered that vertices cor-
respond to atoms in the molecule and sticks to chemical bonds among
them. Therefore it is natural to make it a condition that the two vertices
of the θ-graph should be sent to vertices of stick θ-curve each of which is
shared by three sticks. This condition will be assumed throughout this
paper.
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Figure 1. 31 knot (right-handed trefoil) and its stick presentation

Figure 2. θ-graph and θ-curves TT , TK

2. Proof of Theorem 2

Before proving this theorem we introduce some notions. Let P be a
stick knot or stick θ-curve. A triangle determined by two adjacent sticks
is said to be reducible, if its interior is disjoint from the sticks of P . And
s(P ) will denote the number of sticks of P .

Now we prove the theorem. Let T be a stick θ-curve which is not
trivial. Then immediately we see that s(T ) should be more than 5.
And throughout the proof it can be assumed that no four vertices are
coplanar, by perturbing T slightly if necessary.

Firstly consider the case that T is not almost trivial. Then T should
contain a nontrivial stick knot K as a subknot. By Theorem 1, s(K)
should be at least 6. Therefore

6 ≤ s(K) < s(K) + 1 ≤ s(T ),

which is done. Now we consider the case that T is almost trivial.

Case 1: T is almost trivial and s(T ) = 6.
Firstly suppose that T contains a subknot K of s(K) = 3. If K

is reducible as a triangle of T , then two sticks of K can be isotoped
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Figure 3. stick θ-curves

into a small tubular neighborhood of the third stick along the triangle.
This implies that the triviality of T depends only on those of the other
two subknots of T . But since every its subknot is trivial, we get a
contradiction to the nontriviality of T . If K is irreducible, then we
get an obvious configuration of T as depicted in Figure 4-(a) which
corresponds to a trivial θ-curve.

Now consider possible numbers of sticks constituting subknots of T .
By the observation in the above we have only one case (4, 4, 4) which
means each of three subknots has 4 sticks as depicted in Figure 4-(b). In
such case, the triangle determined by the vertices {v1, v2, v3} is reducible,
for none of four sticks l1,5, l5,3, l1,4 and l4,3 can penetrate the triangle.
Therefore we can reduce the number of sticks of T by one as illustrated
in Figure 5, which is contradictory to the nontriviality of T again.

Before dealing with the rest case, we introduce a necessary lemma.
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Figure 4

Figure 5. Reduction along a triangle

Lemma 1. Let P be a stick knot of s(P ) = 6 such that every triangle
determined by two adjacent sticks is irreducible. Then P is 31 or 3∗1.

Proof. Since P is irreducible and s(P ) = 6, by the arguments of
Lemmas 4, 5, 6 and 7 in [3], it can be shown that each triangle between
two adjacent sticks is penetrated only by one stick, and furthermore we
can label the vertices of P so that

- l1,2 penetrates 43,4,5 and 44,5,6,
- l3,4 penetrates 45,6,1 and 46,1,2,
- l5,6 penetrates 41,2,3 and 42,3,4.

The information in the above is enough to realize the knot type of P .
If l1,2 penetrates 43,4,5 in positive orientation, then P is 31 as depicted
in Figure 6. Otherwise, P is 3∗1. This lemma can be also proved by
applying a method in the proof of Theorem 2 in [8].

Case 2: T is almost trivial and s(T ) = 7.
For subknots of T , the possible distribution of numbers of sticks

should be (5, 5, 4), (6, 4, 4) or (6, 5, 3) as depicted in Figure 7. We observe
each case and derive contradictions.
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Figure 6

Case 2-1. (5, 5, 4): Suppose that the triangle 41,5,4 determined by
the vertices {v1, v5, v4} is irreducible. The possible sticks which may
penetrate 41,5,4 are l2,3 and l3,6. Without loss of generality we may
assume that l2,3 penetrate the triangle. Consider half lines each of which
starts at v2 and passes through a point of 41,5,4. Let H2

1,5,4 be the union
of all such half lines. Then the interior of 41,2,3 is contained in that
of H2

1,5,4 and l4,5 is contained in the boundary of H2
1,5,4 as depicted in

Figure 8. Thus l4,5 cannot penetrate41,2,3. Since l4,5 is the only possible
stick that may penetrate 41,2,3, the triangle should be reducible. We
conclude that at least one of 41,5,4 and 41,2,3 is reducible and hence
we can reduce the number of sticks by one, which is a contradiction by
Case 1.

Case 2-2. (6, 4, 4): Let K be the subknot with s(K) = 6. Note that
l4,5 and l5,6 are only possible sticks of T which may penetrate 41,2,3.
Therefore if 41,2,3 is reducible in K, then it should be reducible also in
T and the number of sticks can be reduced. Hence 41,2,3, also similarly
42,3,4, 44,5,6 and 45,6,1, are irreducible in K. But, the almost-triviality
of T implies that K should be trivial and, by Lemma 1, should have
a reducible triangle. Consequently, 46,1,2 or 43,4,5 should be reducible
in K. Without loss of generality assume that 46,1,2 is such a triangle.
Then the triangle is reducible also in T , for l3,4 and l4,5 are only possible
sticks of T which may penetrate it.

We observe other triangles. The triangle 44,1,2 should be irreducible.
Otherwise, we can reduce the number of sticks along 44,1,2 ∪ 46,1,2 as
depicted in Figure 9. Therefore 44,1,2 is penetrated by l5,6 and similarly
44,1,6 by l2,3.

As seen in the above 42,3,4 and 44,5,6 should be irreducible. We
consider which sticks should penetrate them. Since 44,1,6 is penetrated
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Figure 7. stick distributions of subknots

Figure 8

Figure 9. Reduction along two triangles near a trivalent vertex

by l2,3, the interior of 42,3,4 is contained in that of H2
4,1,6, which implies

that l1,6 does not penetrate the triangle. Therefore 42,3,4 should be
penetrated by l5,6. Then, considering H5

2,3,4, we immediately see that
44,5,6 is not penetrated by l2,3. On the other hand, the interior of 44,5,6

is contained in that of H6
4,1,2, for 44,1,2 is penetrated by l5,6. Hence

l1,2 can not penetrate 44,5,6. In conclusion we get a contradiction that
44,5,6 is reducible.
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Case 2-3. (6, 5, 3): Firstly note that 41,2,3 should be irreducible.
Otherwise, the triviality of T depends on the triviality of the other
two subknots as mentioned in the proof of Case 1. Without loss of
generality we may assume that l4,5 penetrates the triangle. And also
note that both 43,4,5 and 45,6,1 should be irreducible. Otherwise we
can perform reduction along triangle. Considering H4

1,2,3, we see that
l1,2 can not penetrate43,4,5. Therefore the triangle should be penetrated
by l6,1. Again considering H6

3,4,5, it is observed that l5,6(resp. l4,5) can
not penetrate 41,3,4(resp. 46,1,3). Therefore 41,3,4 and 46,1,3 should
be reducible, because l5,6(resp. l4,5) is only possible stick which may
penetrate 41,3,4(resp. 46,1,3). Considering the possibility of reduction
near the trivalent vertices v1 and v3, we see that the reducibility of41,3,4

and 46,1,3 implies the irreducibility of 42,3,4 and 46,1,2 respectively.
Let K be the subknot of s(K) = 6. By Lemma 1, K contains a

triangle which is reducible in K. From the observation in the above we
see that only 44,5,6 is such a triangle. Note that although the triangle is
reducible in K, it should be irreducible in T , that is, l1,3 should penetrate
44,5,6. But considering H1

3,4,5, we see that no such penetration can
happen.
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