Relationship between Image Compression and Gamut Variation Using JPEG and JPEG2000

JPEG 및 JPEG2000을 이용한 영상 압축과 색역 변화의 관계

  • Ko, Kyung-Woo (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Park, Tae-Yong (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Ha, Yeong-Ho (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 고경우 (경북대학교 전자전기컴퓨터학부) ;
  • 박태용 (경북대학교 전자전기컴퓨터학부) ;
  • 하영호 (경북대학교 전자전기컴퓨터학부)
  • Published : 2009.07.25

Abstract

Image compression schemes, such as JPEG and JPEG2000, degrade the Quality of a reconstructed image due to their lossy characteristics. Accordingly, this paper investigates the relationship between the compression ratio and the gamut variation for a reconstructed image using JPEG and JPEG2000. To analyze the relationship between compression ratio and gamut variation, i.e. the hue and chroma shift in the uniform color space, eighteen color samples from the Macbeth ColorChecker are initially used. Based on the color shift phenomenon for the color samples, twelve natural color images, classified into two groups depending on four color attributes, are also used to investigate the relationship between the level of compression and the variation in the gamut area. As a results, through the experiments, least square method is applied to obtain the fitting curves as an equation minimizing the error between the real data and its corresponding approximated values.

JPEG 및 JPEG2000과 같은 영상 압축 알고리즘은 고유의 손실 특성으로 인하여 영상 복원 시 화질을 열화시켜 색역(gamut)을 변화시킨다. 따라서 본 논문에서는 JPEG과 JPEG2000을 이용하여 압축률과 색역 변화의 관계를 연구하였다. 압축률과 색역 변화의 관계를 분석하기 위해 우선 표준 컬러 차트(Macbeth ColorChecker)의 18가지 색 표본을 이용하여 균일한 색 좌표계 내에서의 색상과 채도 변화를 조사하였다. 이를 근거로 12개의 자연 영상을 4가지 속성에 따라 2개의 그룹으로 분류하고 실험을 반복하였다. 그 결과 압축률과 색역 변화의 상관관계를 도출하고, 최소 자승법을 이용하여 근사화 곡선을 유도할 수 있었다.

Keywords

References

  1. R. Neelamani, R. de Queiroz, Z. Fan, S. Dash, and R. Baraniuk, "JPEG compression history estimation for color images," IEEE Trans. On Image Processing, vol. 15, no. 6, pp. 1365-1378, June. 2006 https://doi.org/10.1109/TIP.2005.864171
  2. A. Skodras, C. Christopoulos, and T. Ebrahimi, "The JPEG 2000 still image compression standard, " IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 36-58, Sep. 2001 https://doi.org/10.1109/79.952804
  3. E. Allen, S. Triantaphillidou, and R. E. Jacobson, "Image quality compression between JPEG and JPEG2000. I. Psychophysical investigation," Journal of Imaging Science and Technology, vol. 51, no. 3, pp. 248-258, May/June 2007 https://doi.org/10.2352/J.ImagingSci.Technol.(2007)51:3(248)
  4. S. Triantaphillidou, E. Allen, and R. E. Jacobson, "Image quality compression between JPEG and JPEG2000. II. Scene dependency, scene analysis, and classification," Journal of Imaging Science and Technology, vol. 51, no. 3, pp. 259-270, May/June 2007 https://doi.org/10.2352/J.ImagingSci.Technol.(2007)51:3(259)
  5. U. Steinggrimsson and K. Simon, "Perceptive quality estimations: JPEG2000 versus JPEG," Journal of Imaging Science and Technology, vol. 47, no. 6, pp. 572-603, Nov./Dec. 2003
  6. H. M. Al-Otum, "Quality and quantitative image quality assessment of vector quantization, JPEG, and JPEG2000 compressed images," Journal of Electronic Imaging, vol. 12, no. 3, pp. 511-521, July 2003 https://doi.org/10.1117/1.1579701
  7. F. Coudoux, M. Gazalet, and P. Corlay, "An adaptive postprocessing technique for the reduction of color bleeding in DCT-coded images," IEEE Trans. on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 114-121, Jan. 2004 https://doi.org/10.1109/TCSVT.2003.819179
  8. F. Coudoux, M. Gazalet, and P. Corlay, "Reduction of color bleeding for 4:1:1 compressed video, " IEEE Trans. on Broadcasting, vol. 51, no. 4, pp. 538-542, Dec. 2005 https://doi.org/10.1109/TBC.2005.852243
  9. H. Palus, "Colorfulness of the image: definition, computation and properties," Proceedings of SPIE, Lightmetry and Light and Optics in Biomedicine 2004, vol. 6158, pp. 615805-1- 615805-6, April 2006 https://doi.org/10.1117/12.675760
  10. D. Hasler and S. Susstruck, "Measuring colorfulness in natural images," Proceedings of SPIE-IS&T Electronic Imaging, Human Vision and Electronic Imaging VIII, vol. 5007, pp. 87-95, 2003
  11. M. Mrak, S. Grgic, and M. Grgic, "Picture quality measures in image compression system," IEEE EUROCON Conference, Ljubljana, Slovenia, pp. 233-237, Sep. 2003
  12. Y. H. Cho, Y. T. Kim, C. H. Lee, and Y. H. Ha, "Gamut Mapping Based on Color Space Division for Enhancement of Lightness Contrast and Chrominance," Journal of Imaging Science and Technology, vol. 48, no. 1, pp. 66-74, Jan./Feb. 2004
  13. C. S. Lee, Y. W. Park, S. J. Cho, and Y. H. Ha, "Gamut Mapping Algorithm Using Lightness Mapping and Multiple Anchor Points for Linear Tone and Maximum Chroma Reproduction," Journal of Imaging Science and Technology, vol. 45, no. 3, pp. 209-223, May/June 2001
  14. J. Morovic and M. R. Luo, "Calculating medium and image gamut boundaries for gamut mapping," Color Research and Application, vol. 25, no. 6. pp. 394-401, Dec. 2000 https://doi.org/10.1002/1520-6378(200012)25:6<394::AID-COL3>3.0.CO;2-Y