DOI QR코드

DOI QR Code

Biosensors: a review

바이오센서

  • Hwang, Kyo-Seon (Nano-Bio Research Center, Korea Institute of Science and Technology) ;
  • Kim, Sang-Kyung (Nano-Bio Research Center, Korea Institute of Science and Technology) ;
  • Kim, Tae-Song (Nano-Bio Research Center, Korea Institute of Science and Technology)
  • 황교선 (한국과학기술연구원 나노바이오연구센터) ;
  • 김상경 (한국과학기술연구원 나노바이오연구센터) ;
  • 김태송 (한국과학기술연구원 나노바이오연구센터)
  • Published : 2009.07.31

Abstract

Biosensors exploit the specific binding between recognition molecule on the biosensor surface and target molecule in analyte and are used in the detection of specific biomolecules such as protein, DNA, cell, virus, etc., with a view towards developing analytical devices. Recently, application field of biosensors have been expanding from diagnosis to biodefense because they can basically serve as high performance devices. This review describes the basic information of biosensors including definition, classification, and operational principle. Moreover, we introduce micro/nano technology-based biosensors with better detection performance than traditional method and their application examples.

Keywords

References

  1. A. Rasooly, 'Biosensor technologies', Methods, vol. 37, pp. 1-3, 2005 https://doi.org/10.1016/j.ymeth.2005.05.004
  2. J. Kling, 'Moving diagnostics from the bench to the bedside', Nat. Biotechnol., vol. 24, no. 8, pp. 891-893, 2006 https://doi.org/10.1038/nbt0806-891
  3. H. Craighead, 'Future lab-on-a-chip technologies forinterrogating individual molecules', Nature, vol. 442, pp. 387-393, 2006 https://doi.org/10.1038/nature05061
  4. G.M. Whiteside, 'The origins and the future of mic- rofludics', Nature, vol. 442, pp. 368-373, 2006 https://doi.org/10.1038/nature05058
  5. R.F. Service, 'Coming soon: The pocket DNA sequ- encer', Science, vol. 282, no. 5388, pp. 399-401, 1998 https://doi.org/10.1126/science.282.5388.399
  6. M.A. Burns, 'Everyone's a (future) chemist', Science, vol. 296, pp. 1818-1819, 2002 https://doi.org/10.1126/science.1073562
  7. H. Zhu and M. Snyder, 'Protein chip technology', Curr. Opin. Chem. Biol., vol. 7, pp. 55-63, 2003 https://doi.org/10.1016/S1367-5931(02)00005-4
  8. S. Song, L. Wang, J. Li, J. Zhao, and C. Fan, 'Aptamer-based biosensors', Trends in analytical chemistry, vol. 27, no. 2, pp. 108-117, 2008 https://doi.org/10.1016/j.trac.2007.12.004
  9. S. Venkatasubbarao, 'Microarrays-status and prospets', Trends Biotechnol., vol. 22, no. 12, pp. 630-637, 2004 https://doi.org/10.1016/j.tibtech.2004.10.008
  10. J. Wang. 'Nanomaterial-based amplified transduction of biomolecular interactions', Small, vol. 1, no. 11, pp. 1036-1043, 2005 https://doi.org/10.1002/smll.200500214
  11. J.M. Pingarron, P. Y.-Sedeno, and A.G.-Cortes, 'Gold nanoparticle-based electrochemical biosensors', Electrochim Acta, vol. 53, pp. 5848-5866, 2008 https://doi.org/10.1016/j.electacta.2008.03.005
  12. M. Grabolle, S. C.-Jaricot, R. Nitschke, U.-Genger, and T. Nann, 'Quantum dots versus organic dyes as fluorescent labels', Nature Method, vol. 5, pp. 763-775, 2008 https://doi.org/10.1038/nmeth.1248
  13. K.F. Buechler, 'Diagnostic devices method and apparatus for the controlled movement of reagents without membranes', US patent Patent No. US 6271040,2001
  14. A. Madeiral, E. Ohman, A. Nilsson, B. Sjogren, P. E. Andren, and P. Svenningsson, 'Coupling surface plasmon resonance to mass spectrometry to discover novel protein–protein interactions', Nature protocol, vol. 4, pp. 1023-1038, 2009 https://doi.org/10.1038/nprot.2009.84
  15. N. Blow, 'Proteins and proteomics: life on the surface', Nature method, vol. 6, pp. 389-393, 2009 https://doi.org/10.1038/nmeth0509-389
  16. S.-I. Kim, H.-J Lee. S.-H. Park, H.-S. Bhang, L.-A. Lee, and S.-J. Choi, 'QCM biosensor for the determination of haptoglobin', J. Kor. Sensors Soc., vol. 16, no. 2, pp. 132-141, 2007 https://doi.org/10.5369/JSST.2007.16.2.132
  17. D. Lee, M. Yoo, H. Seo, Y. Taka, W.-G. Kim, K. Yong, S.-W. Rhee, and S. Jeon, 'Enhanced mass sensitivity of ZnO nanorod-grown quartz crystal microbalance', Sens. Actuat. B, vol. 135, pp. 444-448, 2009 https://doi.org/10.1016/j.snb.2008.10.026
  18. H. Seo, M. Yoo, J.-H. Kim, and S. Jeon, 'Detection of thrombin-specific oligonucleotides using quartz crystal microbalances coated with silica sol–gel glass thin films', J. Sol-gel Sci. Techn., vol. 46, pp. 33-38, 2008 https://doi.org/10.1007/s10971-007-1660-5
  19. K. Lange, B. Rapp, and M. Rapp, 'Surface acoustic wave biosensors: a review', Anal Bioanal Chem., vol. 391, no. 5. pp. 1509-1519, 2008 https://doi.org/10.1007/s00216-008-1911-5
  20. Y.R. Lim, B.H. Park, S.K. Choi, K.D. Song, and D.D. Lee, 'A study on the fabrication of poltmer-coated SAW sensors and their sensing properties for some toxic chemical compounds', J. Kor. Sensors Soc., vol. 17, no. 2, pp. 143-146, 2008 https://doi.org/10.5369/JSST.2008.17.2.143
  21. N.L. Anderson and N.G. Anderson. 'The human plasmaproteome: history, character, and diagnostic prospects', Mol. Cell. Proteomic, vol. 1, pp. 845-867, 2002 https://doi.org/10.1074/mcp.R200007-MCP200
  22. R.C. McGlennen, 'Miniaturization technologies for molecular diagnostics', Clin Chem, vol. 47, no. 3, pp. 393-402. 2001
  23. H.M.E. Azzazy, M.M.H. Mansour, and S.C. Kazmierczak, 'Nanodiagnostics: A new frontier for clinical laboratory medicine', Clin Chem, vol. 52, no. 7, pp. 1238-1246, 2006 https://doi.org/10.1373/clinchem.2006.066654
  24. K.K. Jain, 'Nanotechnology in clinical laboratory diagnostics', Clin Chim Acta, vol. 358, pp. 37-54, 2005 https://doi.org/10.1016/j.cccn.2005.03.014
  25. K.K. Jain, 'Nanodiagnostics: application of nanotechnology in molecular diagnostics', Expert Rev Mol Diagn, vol. 3, pp. 153-161, 2003 https://doi.org/10.1586/14737159.3.2.153
  26. P. Fortina, L.J. Kricka, S. Surrey, and P. Grodzinski, 'Nanobiotechnology: the promise and reality of new approaches to molecular recognition', Trends Biotechnol, vol. 23, pp. 168-173, 2005 https://doi.org/10.1016/j.tibtech.2005.02.007
  27. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, and C.M. Lieber, 'Multiplexed electrical detection of cancer markers with nanowire sensor arrays', Nat Biotechnol, vol. 23, pp. 1294-1301, 2005 https://doi.org/10.1038/nbt1138
  28. Y. Chen, X. Wang, M.K. hong, S. Erramilli, and P. mohanty, 'Nanoscale field effect transistor for biomolecular signal amplification', Appl. Phys. Lett., vol. 91, 243511, 2007 https://doi.org/10.1063/1.2822445
  29. S. Weiss, 'Fluorescence spectroscopy for single biomolecules', Science, vol. 283, pp. 1676-1683, 1999 https://doi.org/10.1126/science.283.5408.1676
  30. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger,and C.A. Mirkin, 'Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles', Science, vol. 277, pp. 1078-1081, 1997 https://doi.org/10.1126/science.277.5329.1078
  31. J. Liu and Y. Lu, 'A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles', J. Am. Chem. Soc., vol. 125, pp. 6642-6643, 2003 https://doi.org/10.1021/ja034775u
  32. T.A. Taton, C.A. Mirkin, and R.L. Letsinger, 'Sca- nometric DNA array detection with nanoparticle probes', Science, vol. 289, pp. 1757-1760, 2000 https://doi.org/10.1126/science.289.5485.1757
  33. J.M. Nam, S.J. Park, and C.A. Mirkin, 'Bio-barcodes based on oligonucleotide-modified nanoparticles', J. Am. Chem. Soc., vol. 124, pp. 3820-3821, 2002 https://doi.org/10.1021/ja0178766
  34. S.J. Park, T.A. Taton, and C.A. Mirkin, 'ScanometricDNA array detection with nanoparticle probes', Science, vol. 295, pp. 1503-1506, 2002
  35. D.S. Kim, J.E. Park, J.K. Shin, P.K. Kim, G. Lim, and S. Shoji, 'An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes', Sens Actuat B, vol. 117, pp. 488-494, 2006 https://doi.org/10.1016/j.snb.2006.01.018
  36. H. Im, X.-J. Huang, B. Gu, and Y.-K. Choi, 'A dielectric-modulated field-effect transistor for biosensing', Nat Nanotechnol. vol. 2, pp. 430-434, 2007 https://doi.org/10.1038/nnano.2007.180
  37. P.S. Waggoner and H.G. Craighead, 'Micro- and nanomechanical sensors for environmental, chemical, and biological detection', Lab Chip, vol. 7, pp. 1238-1255, 2007 https://doi.org/10.1039/b707401h
  38. R. Raiteri, M. Gratarola, H.-J. Butt, and P. Skladal, 'Micromechanical cantilevver-based biosensors', Sens Actuator B, vol. 79, pp. 115-126, 2001 https://doi.org/10.1016/S0925-4005(01)00856-5
  39. K.M. Goeders, J.S. Colton and L.A. Bottomley, 'Microcantilevers: sensing chemical interactions via mechanical motion', Chem. Rev. vol. 108, pp. 522-542, 2008 https://doi.org/10.1021/cr0681041
  40. K.S. Hwang, S.-M. Lee, S.K. Kim, J.H. Lee, and T.S. Kim, 'Micro-and nanocantilever devices and systems for biomolecule detection', Annual review of analytical chemistry, vol. 2, pp. 77-98, 2009 https://doi.org/10.1146/annurev-anchem-060908-155232
  41. G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, and A. Majumdar, 'Bioassay of prostate-specific antigen(PSA) using microcantilevers', Nat Biotechnol., vol. 19, pp. 856-860, 2001 https://doi.org/10.1038/nbt0901-856
  42. K.S. Hwang, J.H. Lee, J. Park, D.S. Yoon, and T.S. Kim, 'In-situ quantitative analysis of a prostate-specific antigen(PSA) using a nanomechanical PZT cantilever', Lab Chip, vol. 4, pp. 547-552, 2004 https://doi.org/10.1039/b410905h
  43. J.H. Lee, K.S. Hwang, J. Park, K.H. Yoon, D.S. Yoon, and T.S. Kim, 'Immunoassay of prostate-specific antigen(PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever', Biosens. Bioelectron., vol. 20, pp. 2157-2162, 2005 https://doi.org/10.1016/j.bios.2004.09.024
  44. T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, K. Bobcock, and S.R. Manalis, 'Weighing of biomolecules, single cells and single nanoparticles in fluid', Nature, vol. 446, no. 26, pp. 1066-1069, 2007 https://doi.org/10.1038/nature05741
  45. R. Marie, H. Jensenius, J. Thaysen, C.B. Christensen, and A. Boisen, 'Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors', Ultramicroscopy, vol. 91, pp. 29-36, 2002 https://doi.org/10.1016/S0304-3991(02)00079-7
  46. B. Ilic. Y. Yang, K. Aubin. R. Reichenbach, S. Krylov, and H.G. Craighead, 'Enumeration of DNA molecules bound to a nanomechanical oscillator', Nano Lett., vol. 5, pp. 925-929, 2005 https://doi.org/10.1021/nl050456k
  47. A.K. Gupta, P.R. nair, D. Akin, M.R. Ladisch, S. Broyles, M.A. Alam, and R. Bashir, 'Anomalous resonance in a nanomechanical biosensor', Proc. Natl. Acad. Sci. USA, vol. 103, no. 36, pp. 13362-13367, 2006 https://doi.org/10.1073/pnas.0602022103
  48. S.-M. Lee, K.S. Hwang, H-J. yoon, D.S. Yoon, S.K. Kim, Y.-S. Lee, and T.S. Kim, 'Sensitivity enhancement of dynamic microcantilever by stress inducer and mass inducer to detect PSA at low picogram level', Lab Chip, In press