DOI QR코드

DOI QR Code

Implant surface treatments affect gene expression of Runx2, osteogenic key marker

  • Na, Young (Department of Dental Prosthodontics, Seoul National University College of Dentistry) ;
  • Heo, Seong-Joo (Department of Dental Prosthodontics, Seoul National University College of Dentistry) ;
  • Kim, Seong-Kyun (Department of Dental Prosthodontics, Seoul National University College of Dentistry) ;
  • Koak, Jai-Young (Department of Dental Prosthodontics, Seoul National University College of Dentistry)
  • Published : 2009.07.31

Abstract

STATEMENT OF PROBLEM. The aim of this study was to study the effects of various surface treatments to a titanium surface on the expression of Runx2 in vitro. MATERIAL AND METHODS. Human Osteosarcoma TE-85 cells were cultured on machined, sandblasted, or anodic oxidized cpTi discs. At various times of incubation, the cells were collected and then processed for the analysis of mRNA expression of Runx2 using reverse transcription-PCR. RESULTS. The expression pattern of Runx2 mRNA was differed according to the types of surface treatment. When the cells were cultured on the untreated control culture plates, the gene expression of Runx2 was not increased during the experiments. In the case of that the cells were cultured on the machined cpTI discs, the expression level was intermediate at the first day, but increased constitutively to day 5. In cells on sandblasted cpTi discs, the expression level was highest in the first day sample and the level was maintained to 5 days. In cells on anodized cpTi discs, the expression level increased rapidly to 3 days, but decreased slightly in the 5-th day sample. CONCLUSION. Different surface treatments may contribute to the regulation of osteoblast function by influencing the level of gene expression of key osteogenic factors.

Keywords

References

  1. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67;932-49.
  2. Schwartz Z, Kieswetter K, Dean DD, Boyan BD. Underlying mechanisms at the bone-surface interface during regeneration. J Periodontal Res 1997;32:166-71. https://doi.org/10.1111/j.1600-0765.1997.tb01399.x
  3. Ann Wennerberg, Implant design and surface factors. Int J prosthodont 2003;16:45-51.
  4. Bigerelle M, Anselme K, Noel B, Ruderman I, Hardouin P, Iost A. Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials 2002;23:1563-77. https://doi.org/10.1016/S0142-9612(01)00271-X
  5. Buddy D. Ratner, Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J Dent Educ 2001;65:1340-9.
  6. Li LH, Kong YM Kin HW, Kim YW, Kim HE, Heo SJ, Koak JY, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25:2867-75. https://doi.org/10.1016/j.biomaterials.2003.09.048
  7. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulation bone and cartilage cell response. Biomaterials 1996;17:137-46. https://doi.org/10.1016/0142-9612(96)85758-9
  8. Xavier SP, Carvalho PS, Beloti MM, Rosa AL, Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent 2003;31:173-80. https://doi.org/10.1016/S0300-5712(03)00027-7
  9. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992;7:302-10.
  10. Keller JC, Schneider GB, Stanford CM, Kellogg B. Effect of surface topography of titanium on surface chemistry and cellular response. Implant Dent 1996;5:83-8. https://doi.org/10.1097/00008505-199600520-00002
  11. Schneider G, Burridge K. Formation of focal adhesions by osteoblasts adhering to different substrata. Exp Cell Res 1994;214:264-9. https://doi.org/10.1006/excr.1994.1257
  12. Masuda T, Salvi GE, Offenbacher S, Felton DA, Cooper LE. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. Int J Oral Maxillofac Implants 1997;12:472-85.
  13. Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res 1999;13:38-48. https://doi.org/10.1177/08959374990130011301
  14. Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Marchesini J, Scapoli L, Piattelli A. Analysis of osteoblast-like MG63 cells' response to a rough implant surface by means of DNA microarray. J Oral Implantol 2003;29:215-20 https://doi.org/10.1563/1548-1336(2003)029<0215:AOOMCR>2.3.CO;2
  15. Schneider GBH, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, Stanford C. Implant surface roughness affects osteoblast gene expression. J Dent Res 2003;82:372-7. https://doi.org/10.1177/154405910308200509
  16. Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res 2004;69A:462-8. https://doi.org/10.1002/jbm.a.30016
  17. Ogawa T, Sukotjo C, Nishimura I. Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness. J Prosthodont 2002;11:241-7. https://doi.org/10.1053/jopr.2002.129772
  18. Shui C, Spelsberg TC, Riggs BL, Khosla S. Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 2003;18:213-21. https://doi.org/10.1359/jbmr.2003.18.2.213
  19. Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RJ. Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the osf2 transcription factor. J Biol Chem 1998;273:32988-94. https://doi.org/10.1074/jbc.273.49.32988
  20. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89:747-54. https://doi.org/10.1016/S0092-8674(00)80257-3
  21. Komori T. A fundamental transcription factor for bone and cartilage. Biochem Biophys Res Commun 2000;276:813-6. https://doi.org/10.1006/bbrc.2000.3460
  22. Komori T. Runx2, A multifunctional transcription factor in skeletal development. J Cell biochem 2002;87:1-8.
  23. Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 1999;13:1025-36. https://doi.org/10.1101/gad.13.8.1025
  24. Prince M, Banerjee C, Javed A, Green J, Lian JB, Stein GS, Bodine PV, Komm BS. Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J Cell Biochem 2001;80:424-40. https://doi.org/10.1002/1097-4644(20010301)80:3<424::AID-JCB160>3.0.CO;2-6
  25. Ducy P. Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 2000;219:461-71. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1074>3.0.CO;2-C
  26. Schneider GB, Zaharias R, Stanford C. Osteoblast integrin adhesion and signaling regulate mineralization. J Dent Res 2001;80:1540-4. https://doi.org/10.1177/00220345010800061201
  27. Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ. Celltype-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res 2002;17:1931-44. https://doi.org/10.1359/jbmr.2002.17.11.1931
  28. Brett PM, Harle J, Salih V, Mihoc R, Olsen I. Jones FH. Tonetti M. Roughness response genes in osteoblasts. Bone 2004;35:124-33. https://doi.org/10.1016/j.bone.2004.03.009
  29. Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 2002;277:23934-41. https://doi.org/10.1074/jbc.M109881200
  30. Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD. Implant materials, designs, and surface topographies: their effect on osseointegration. Int J Oral Maxillofac Implants 2000;15:675-90.
  31. Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996;18:451-7. https://doi.org/10.1016/8756-3282(96)00044-0
  32. Puleo DA, Holleran LA, Doremus RH, Bizios R. Osteoblast responses to orthopedic implant materials in vitro. J Biomed Mater Res 1991;25:711-23. https://doi.org/10.1002/jbm.820250603
  33. Franceschi RT. The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 1999;10:40-57. https://doi.org/10.1177/10454411990100010201

Cited by

  1. vol.101B, pp.1, 2012, https://doi.org/10.1002/jbm.b.32803
  2. Effect of magnesium and calcium phosphate coatings on osteoblastic responses to the titanium surface vol.5, pp.4, 2013, https://doi.org/10.4047/jap.2013.5.4.402
  3. Optimized Surface Characteristics and Enhanced in Vivo Osseointegration of Alkali-Treated Titanium with Nanonetwork Structures vol.20, pp.5, 2009, https://doi.org/10.3390/ijms20051127