DOI QR코드

DOI QR Code

Effect of Microalgal Species on Nauplii Production in the Benthic Copepod Tigriopus japonicus

저서성 요각류 Tigriopus japonicus의 nauplii 생산에 미치는 미세조류의 영향

  • Kim, Mi-Jeong (Department of Aquaculture, Pukyong National University) ;
  • Kim, Jeong-Chang (Ocean Research Vessel, Tamyang, Pukyong National University) ;
  • Hur, Sung-Bum (Department of Aquaculture, Pukyong National University)
  • Published : 2009.06.30

Abstract

The survival and growth of marine benthic invertebrate larvae such as abalone depend on the nutritional value of micro algae. However, it is difficult to determine the dietary value of the many microalgal species used for food by benthic larvae. Therefore, we tested the benthic copepod, Tigriopus japonicus, which grazes microalgae on substrata in a manner similar to abalone larvae. It also has short generation time and is easy to rear which makes to be easier to examine the dietary value of each micro algal species. We measured the daily production of nauplii from gravid females of T. japonicus fed 26 microalgal species separately. Amino acid and fatty acid content of the micro algae and the copepod was also analyzed. The nauplii production of T. japonicus was the highest (10.7) when they were fed Navicula sp. (B-394) and the lowest (0.8) when they were fed Scrippsiella trochoidea. In Tetraselmis suecica the nauplii production was so high (8.2), which was not significantly different with the diatom group. We determined that Navicula sp. (B-394), Rhaphoneis sp. and T. suecica were good sources of food for T. japonicus. We suggest that a diet of with a mixture of these three micro algal species may be also good for invertebrate larvae such as abalone.

Keywords

References

  1. Brown, M.R 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. BioI. Ecol., 145, 79-99 https://doi.org/10.1016/0022-0981(91)90007-J
  2. Brown, M.R., S.W. Jeffrey and C.D. Garland. 1989. Nutritional aspects of microalgae used in mariculture: a literature review. C.S.I.R.O. Marine Laboratories Report 205. C.S.I.R.O., Australia, 1-44
  3. Brown, M.R., S.W. Jeffrey, J.K. Volkman and G.A. Dunstan. 1997. Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315-331 https://doi.org/10.1016/S0044-8486(96)01501-3
  4. Cabrera, T., J.H. Bae, S.C. Bai and S.B. Hur. 2005. Comparison of the nutritional value of Chlorella ellipsoidea and Nannoehloris oeulata for rotifer and Artemia nauplii. J. Fish. Sci. Teclmol., 8(4), 201-206 https://doi.org/10.5657/fas.2005.8.4.201
  5. Castell, J.D., J.G. Bell, D.R. Tocher and J.R. Sargent. 1994. Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and farty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture, 128, 315-333 https://doi.org/10.1016/0044-8486(94)90320-4
  6. Ducan, D.B. 1955. Multiple-range and multiple F test. Biometrics, 11, 1-42 https://doi.org/10.2307/3001478
  7. Enright, C.T., G.F. Newkirk, J.S. Craigie and J.D. Castell. 1986. Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. J. Exp. Mar. BioI. Ecol., 96, 1-13 https://doi.org/10.2983/0730-8000
  8. Fleeger, J.W. 2005. The potential to mass-culture harpacticoid copepod for use as food for larval fish. In: Copepods in Aquaculture. Lee, C-S., P.J. O'Bryen and N.H. Marcus, eds. Blackwell Publishing Oxford, UK, pp. 11-24
  9. Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine plankton diatoms. I. Cyclotella nana Hustedt and Detonula eonfervaeea (Cleve). Gran. Can. J. MicrobioI., 8, 229-239 https://doi.org/10.1139/m62-029
  10. Hur, S.B. 2001. Live food-microalgae. In: Algae of Korea Ecology and Application. Lee, I.K., ed. Academy Books, Seoul, 267-285
  11. Ianora, A. 2005. Birth control effects of diatoms on copepod reproduction: Implications for aquaculture studies. In: Copepods in Aquaculture. Lee, C-S., P.J. O'Bryen and N.H. Marcus, eds. Blackwell Publishing Oxford, UK, pp. 31-48
  12. Ianora, A and S.A. Poulet 1993. Egg viability in the copepod Temora stylifera. Umnol. Ocean, 38, 1615-1626
  13. Irigoien, X., R.P. Harris, R.N. Head and D. Harbour. 2000. The influence of diatom abundance on the egg production rate of Calanus helgolandieus in the English Channel. Limnol. Ocean, 45, 1433-1439 https://doi.org/10.4319/lo.2000.45.6.1433
  14. Koga, F. 1970. On the life history of Tigriopus japonieus Mori (Copepoda). J. Oceanogr. Soc. Jap., 26, 11-21 https://doi.org/10.1007/BF02764551
  15. Langdon, C,J. 1982. New teclmiques and their application to studies of bivalves. In: Proceedings of the Second International Conference of Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition. Pruder, G.D., C.J. Landon and D.E. Conkilin, eds. Louisian State University, Baton Rouge, pp. 305-320
  16. Langdon, C.J and M.J. Waldock. 1981. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. BioI. Assoc. UK, 61, 431-448 https://doi.org/10.1017/S0025315400047056
  17. Lee, K.W., S. Raisuddin, D.S. Hwang, H.G. Park, H.U. Dahms, I.Y. AIm and J.S. Lee. 2008. Two-generation toxicity study on the copepod model species Tigriopus japonieus. Chemosphcre, 72, 1359-1365 https://doi.org/10.1016/j.chemosphere.2008.04.023
  18. Lee, W.J. 1991. Efficiency of various microbial foods for Tigriopus japonieus Mori. Bull. Korean Fish. Soc., 24, 117-122
  19. Martinez-Fernandez, E., H. Acosta-Salmon and C. Rangel-Davalos. 2004. Ingestion and digestion of 10 species of microa\gae by winged pearl oyster Pteria sterna (Gould, 1851) larvae. Aquaculture, 230, 417-423 https://doi.org/10.1016/S0044-8486(03)00416-2
  20. Metcalfe, L.D., A.A. Schmitz and J.R. Pelka. 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem., 38, 514-515 https://doi.org/10.1021/ac60235a044
  21. Millar, R.M. and J.M. Scott. 1967. The larvae of the oyster Ostrea edulis, during starvation. J. Mar. BioI. Ass. UK, 47, 475-484 https://doi.org/10.1017/S0025315400035104
  22. Min, B.H., H.G. Park, K.W. Lee and S.B. Hur. 2007. Selecting the optimal microalgal species for culturing the brackish water copepod Paracyclopina nana. J. Kor. Fish. Soc., 40(1), 8-15
  23. Ogawa, K. 1977. The role of bacterial floc as food for zooplankton in the sea. Bull. Jap. Soc. Sci. Fish., 43, 395-407 https://doi.org/10.2331/suisan.43.395
  24. Park, H.G. and S.B. Hur. 1993. Optimum culture environment of the benthic copepod, Tigriopus japonicus. J. Aquaculture, 6, 149-159
  25. Park, H.K., S.B. Hur and C.W. Kim. 1998. Culturing method and dietary value of benthic copepod, Tigriopusjaponicus. J. Aquaculture, 11, 261-269
  26. Poisson, L. and F. Ergan. 2001. Docosahexaenoic acid ethyl esters from Isochrysis galana. J. Biotechnol., 91, 75-81 https://doi.org/10.1016/S0168-1656(01)00295-4
  27. Raisuddin, S., K.W.H. Kwok, K.M.Y. Leung, D. Schlenk and lS. Lee. 2007. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquat. Toxicol., 83, 161-173 https://doi.org/10.1016/j.aquatox.2007.04.005
  28. Takano, H. 1968. Tigriopus japonicus. Aquacult. Magaz., 5(8), 105-108
  29. Thompson, P.A., M. Guo and P.J. Harrison. 1993. The influence of irradianee on the biochemical composition of three phytoplankton species and their nutritional value for larvae of the Pacific oyster (Crassostrea gigas). Mar. BioI., 117, 259-268 https://doi.org/10.1007/BF00345671
  30. Utting, S.D. 1985. Influence of nitrogen availability on the biochemical composition of three unicellular marine algae of commercial importance. Aquacult. Eng., 4, 175-190 https://doi.org/10.1016/0144-8609(85)90012-3
  31. Volkman, J.K., G.A. Dunstan, S.W. Jeffrey and P.S. Kearney. 1991. Fatty acids from micro algae of the genus Pavlova. Phytochemistry, 30, 1855-1859 https://doi.org/10.1016/0031-9422(91)85028-X