Polycarprolactone Ultrafine Fiber Membrane Fabricated Using a Charge-reduced Electrohydrodynamic Process

  • Kim, Geun-Hyung (Department of Mechanical Engineering, College of Engineering, Chosun University) ;
  • Yoon, Hyeon (Department of Mechanical Engineering, College of Engineering, Chosun University) ;
  • Lee, Haeng-Nam (Department of Mechanical Engineering, College of Engineering, Chosun University) ;
  • Park, Gil-Moon (Department of Mechanical Engineering, College of Engineering, Chosun University) ;
  • Koh, Young-Ho (Ilsong Institute of Life Science, Hallym Medical School, Hallym University)
  • Published : 2009.07.25

Abstract

This paper introduces a modified electro spinning system for biomedical wound-healing applications. The conventional electrospinning process requires a grounded electrode on which highly charged electro spun ultrafine fibers are deposited. Biomedical wound-healing membranes, however, require a very low charge and a low level of remnant solvent on the electrospun membrane, which the conventional process cannot provide. An electrohydrodynamic process complemented with field-controllable electrodes (an auxiliary electrode and guiding electrodes) and an air blowing system was used to produce a membrane, with a considerably reduced charge and low remnant solvent concentration compared to one fabricated using the conventional method. The membrane had a small average pore size (102 nm) and high porosity (85.1%) for prevention of bacterial contamination. In vivo tests on rats showed that these directly electro spun fibrous membranes produced using the modified electro spinning process supported the good healing of skin bums.

Keywords

References

  1. J. Doshi and D. H. Reneker, J. Electrostatics, 35, 151 (1995) https://doi.org/10.1016/0304-3886(95)00041-8
  2. G. Viswanathan, S. Murugesan, V. Pushparaj, O Nalamasu, P. M. Ajayan, and R. J. Linhardt, Biomacromolecules, 7, 415 (2006) https://doi.org/10.1021/bm050837s
  3. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002) https://doi.org/10.1002/jbm.10167
  4. W. E. Teo and S. Ramakrishna, Nanotechnology, 17, R89 (2006) https://doi.org/10.1088/0957-4484/17/14/R01
  5. D. W. Hutmacher, J. Biomater. Sci., 12, 107 (2001) https://doi.org/10.1163/156856201744489
  6. J. Venugopal, L. L. Ma, and S. Ramakrishuna, Tissue Eng., 11, 847 (2005) https://doi.org/10.1089/ten.2005.11.847
  7. R. Kessick, J. Fenn, and G. Tepper, Polymer, 45, 2981 (2004) https://doi.org/10.1016/j.polymer.2004.02.056
  8. G. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 44, 1426 (2006) https://doi.org/10.1002/polb.20814
  9. G. H. Kim and W. Kim, Appl. Phys. Lett., 88, 23310 (2006)
  10. G. H. Kim, Biomed. Mater., 3, 025010 (2008) https://doi.org/10.1088/1748-6041/3/2/025010
  11. H. A. Pohl, Dielectrophoresis, Cambridge University Press, New York, 1978
  12. G. H. Kim and W. Kim, Appl. Phys. Lett., 89, 013111 (2006) https://doi.org/10.1063/1.2217924
  13. S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett., 90, 144 (2003)
  14. I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu, Biomacromolecules, 5, 1428 (2004) https://doi.org/10.1021/bm034539b
  15. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003) https://doi.org/10.1016/S0266-3538(03)00178-7