Fabrication of Endothelial Cell-Specific Polyurethane Surfaces co-Immobilized with GRGDS and YIGSR Peptides

  • Choi, Won-Sup (Department of Molecular Science and Technology, Ajou University) ;
  • Bae, Jin-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Joung, Yoon-Ki (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Ki-Dong (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Mi-Hee (Department of Medical Engineering, Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine) ;
  • Park, Jong-Chul (Department of Medical Engineering, Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine) ;
  • Kwon, Il-Keun (Department of Oral Biology & Institute of Oral Biology at Graduate School of Dentistry, Kyung Hee University)
  • Published : 2009.07.25

Abstract

Polyurethane (PU) is widely used as a cardiovascular biomaterial due to its good mechanical properties and hemocompatibility, but it is not adhesive to endothelial cells (ECs). Cell adhesive peptides, GRGDS and YIGSR, were found to promote adhesion and spreading of ECs and showed a synergistic effect when both of them were used. In this study, a surface modification was designed to fabricate an EC-active PU surface capable of promoting endothelialization using the peptides and poly(ethylene glycol) (PEG) spacer, The modified PU surfaces were characterized in vitro. The density of the grafted PEG on the PU surface was measured by acid-base back titration to the terminal-free isocyanate groups. The successful immobilization of pep tides was confirmed by amino acid analysis, following hydrolysis, and contact angle measurement. The uniform distribution of peptides on the surface was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). To evaluate the EC adhesive property, cell viability test using human umbilical vein EC (HUVEC) was investigated in vitro and enhanced endothelialization was characterized by the introduction of cell adhesive peptides, GRGDS and YIGSR, and PEG spacer. Therefore, GRGDS and YIGSR co-immobilized PU surfaces can be applied to an EC-specific vascular graft with long-term patency by endothelialization.

Keywords

References

  1. D. I. Cha, K. W. Kim, G. H. Chu, H. Y. Kim, K. H. Lee, and N. Bhattarai, Macromol. Res., 14, 331 (2006) https://doi.org/10.1007/BF03219090
  2. K. H. Lee, B. S. Lee, C. H. Kim, H. K. Kim, K. W. Kim, and C. W. Nah, Macromol. Res., 13, 441 (2005) https://doi.org/10.1007/BF03218478
  3. A. V. Raghu, H. M. Jeong, J. H. Kim, Y. R. Lee, Y. B. Cho, and K. Sirsalmath, Macromol. Res., 16, 194 (2008) https://doi.org/10.1007/BF03218852
  4. H. J. Yoo and H. D. Kim, Macromol. Res., 16, 596 (2008) https://doi.org/10.1007/BF03218566
  5. J. K. Yun, H. J. Yoo, and H. D. Kim, Macromol. Res., 15, 22 (2007) https://doi.org/10.1007/BF03218748
  6. H. D. Park, J. W. Bae, K. D. Park, T. Ooya, N. Yui, J. H. Jang, D. K. Han, and J. W. Shin, Macromol. Res., 14, 73 (2006) https://doi.org/10.1007/BF03219071
  7. M. Tirrell, E. Kokkoli, and M. Biesalski, Surface Science, 500, 61 (2002) https://doi.org/10.1016/S0039-6028(01)01548-5
  8. J. H. Lee, Y. M. Ju, and D. M. Kim, Biomaterials, 21, 683 (2000) https://doi.org/10.1016/S0142-9612(99)00197-0
  9. K. D. Park, A. Z. Piao, H. Jacobs, T. Okano, and S. W. Kim, J. Polym. Sci. Part A: Polym. Chem., 29, 1725 (1991) https://doi.org/10.1002/pola.1991.080291206
  10. K. D. Park, Y. S. Kim, D. K. Han, Y. H. Kim, E. H. Bae, H. S. Lee, and K. S. Choi, Biomaterials, 19, 851 (1998) https://doi.org/10.1016/S0142-9612(97)00245-7
  11. Y. H. Kim, D. K. Han, K. D. Park, and S. H. Kim, Biomaterials, 24, 2213 (2003) https://doi.org/10.1016/S0142-9612(03)00023-1
  12. K. Doi and T. Matsuda, J. Biomed. Mater. Res., 34, 361 (1997) https://doi.org/10.1002/(SICI)1097-4636(19970305)34:3<361::AID-JBM11>3.0.CO;2-J
  13. H. S. Yang, K. Park, and J. S. Son, Macromol. Res., 15, 256 (2007) https://doi.org/10.1007/BF03218784
  14. C. M. Jung, Y. C. Bae, and J. J. Kim, Macromol. Res., 15, 682 (2007) https://doi.org/10.1007/BF03218950
  15. C. Y. Tan and Y. H. Kim, Macromol. Res., 16, 481 (2008) https://doi.org/10.1007/BF03218548
  16. J. Guan, M. S. Sacks, E. J. Beckman, and W. R. Wagner, J. Biomed. Mater. Res., 61, 493 (2002) https://doi.org/10.1002/jbm.10204
  17. C. Fields, A. Cassano, C. Allen, A. Meyer, K. J. Pawlowski, G. L. Bowlin, S. E. Rittgers, and M. Szycher, J. Biomat. Appl., 17, 45 (2002) https://doi.org/10.1177/0885328202017001861
  18. J. S. Park, J. M. Kim, and S. J. Lee, Macromol. Res., 15, 424 (2007) https://doi.org/10.1007/BF03218809
  19. S. J. Lee, Y. Son, and C. H. Kim, Macromol. Res., 15, 348 (2007) https://doi.org/10.1007/BF03218798
  20. Y. S. Lin, S. S. Wang, T. W. Chung, Y. H. Wang, S. H. Chiou, J. J. Hsu, N. K. Chou, K. H. Hsieh, and S. H. Chu, Artificial Organs, 25, 617 (2001) https://doi.org/10.1046/j.1525-1594.2001.025008617.x
  21. S. P. Massia and J. Stark, J. Biomed. Mater. Res., 56, 390 (2001) https://doi.org/10.1002/1097-4636(20010905)56:3<390::AID-JBM1108>3.0.CO;2-L
  22. D. A. Wang, J. Ji, Y. H. Sun, J. C. Shen, L. X. Feng, and J. H. Elisseeff, Biomacromolecules, 3, 1286 (2002) https://doi.org/10.1021/bm0255950
  23. M. S. Bae, K. Y. Lee, and Y. J. Park, Macromol. Res., 15, 469 (2007) https://doi.org/10.1007/BF03218816
  24. H. W. Jun and J. West, J. Biomater. Sci.-Polym. E., 15, 73 (2004) https://doi.org/10.1163/156856204322752246
  25. E. Genove, C. Shen, S. Zhang, and C. E. Semino, Biomaterials, 26, 3341 (2005) https://doi.org/10.1016/j.biomaterials.2004.08.012
  26. O. H. Kwon, Y. C. Nho, K. D. Park, and Y. H. Kim, J. Appl. Polym. Sci., 71, 631 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<631::AID-APP15>3.0.CO;2-G
  27. K. M. Park, Y. K. Joung, and K. D. Park, Macromol. Res., 16, 517 (2008) https://doi.org/10.1007/BF03218553
  28. Y. J. Jun, K. M. Park, Y. K. Joung, S. J. Lee, and K. D. Park, Macromol. Res., in press
  29. M. J. Ernsting, G. C. Bonin, M. Yang, R. S. Labow, and P. Santerre, Biomaterials, 26, 6536 (2005) https://doi.org/10.1016/j.biomaterials.2005.04.047
  30. J. A. Neff, K. D. Caldwell, and P. A. Tresco, J. Biomed. Mater. Res., 40, 511 (1998) https://doi.org/10.1002/(SICI)1097-4636(19980615)40:4<511::AID-JBM1>3.0.CO;2-I
  31. C. C. Larsen, F. Kligman, K. K. Marchant, and R. E. Marchant, Biomaterials, 27, 4846 (2006) https://doi.org/10.1016/j.biomaterials.2006.05.009
  32. J. J. Yoon, S. H. Song, D. S. Lee, and T. G. Park, Biomaterials, 25, 5613 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.014
  33. K. C. Dee, T. T. Andersen, and R. Bizios, Mater. Res. Soc. Symp. Proc., 331, 115 (1994)
  34. E. Ruoslahti and M. D. Pierschbacher, Science, 238, 491 (1987) https://doi.org/10.1126/science.2821619
  35. S. E. Dsouza, M. H. Ginsberg, and E. F. Plow, Trend. Biol. Sci., 16, 246 (1991) https://doi.org/10.1016/0968-0004(91)90096-E
  36. S. M. Sagnella, F. Kligman, E. H. Anderson, J. E. King, G. Murugesan, R. E. Marchant, and K. K. Marchant, Biomaterials, 25, 1249 (2004) https://doi.org/10.1016/S0142-9612(03)00634-3
  37. Y. Yamada and H. K. Kleinman, Curr. Opin. Cell. Biol., 4, 819 (1992) https://doi.org/10.1016/0955-0674(92)90105-L
  38. J. Labat-Robert, Pathologie et Biologie, 51, 563 (2003) https://doi.org/10.1016/j.patbio.2003.09.006
  39. K. M. Malinda and H. K. Kleinman. Int. J. Biochem. Cell Biol., 28, 957 (1996) https://doi.org/10.1016/1357-2725(96)00042-8
  40. D. S. Grant, K. Tashiro, B. Segui-Real, Y. Yamada, G. R. Martin, and H. K. Kleinmam, Cell, 58, 933 (1989) https://doi.org/10.1016/0092-8674(89)90945-8
  41. B. Clement, B. Segui-Real, P. Savagner, H. K. Kleinman, and Y. Yamada, J. Cell. Biol., 110, 185 (1990) https://doi.org/10.1083/jcb.110.1.185
  42. Y. Iwamoto, J. Graf, M. Sasaki, H. K. Kleinmam, D. R. Greatorex, G. R. Martin, F. A. Robey, and Y. Yamada, J. Cell. Physiol., 134, 287 (1988) https://doi.org/10.1002/jcp.1041340216