Effects of Various Intracranial Volume Measurements on Hippocampal Volumetry and Modulated Voxel-based Morphometry

두개강의 용적측정법이 해마의 용적측정술과 화소기반 형태계측술에 미치는 영향

  • Tae, Woo-Suk (Neuroscience Research Institute, Kangwon National University College of Medicine) ;
  • Kim, Sam-Soo (Neuroscience Research Institute, Kangwon National University College of Medicine) ;
  • Lee, Kang-Uk (Neuroscience Research Institute, Kangwon National University College of Medicine) ;
  • Nam, Eui-Cheol (Neuroscience Research Institute, Kangwon National University College of Medicine)
  • 태우석 (뇌신경연구소, 국립강원대학교 의학전문대학원) ;
  • 김삼수 (뇌신경연구소, 국립강원대학교 의학전문대학원) ;
  • 이강욱 (뇌신경연구소, 국립강원대학교 의학전문대학원) ;
  • 남의철 (뇌신경연구소, 국립강원대학교 의학전문대학원)
  • Published : 2009.06.30

Abstract

Purpose : To investigate the effects of various intracranial volume (ICV) measurement methods on the sensitivity of hippocampal volumetry and modulated voxel-based morphometry (mVBM) in female patients with major depressive disorder (MDD). Materials and Methods : T1 magnetic resonance imaging (MRI) data for 41 female subjects (21 MDD patients, 20 normal subjects) were analyzed. Hippocampal volumes were measured manually, and ICV was measured manually and automatically using the FreeSurfer package. Gray and white matter volumes were measured separately. Results : Manual ICV normalization provided the greatest sensitivity in hippocampal volumetry and mVBM, followed by FreeSurfer ICV, GWMV, and GMV. Manual and FreeSurfer ICVs were similar in normal subjects (p = 0.696), but distinct in MDD patients (p = 0.000002). Manual ICV-corrected total gray matter volume (p = 0.0015) and Manual ICV-corrected bilateral hippocampal volumes (right, p = 0.014; left, p = 0.004) were decreased significantly in MDD patients, but the differences of hippocampal volumes corrected by FreeSurfer ICV, GWMV, or GMV were not significant between two groups (p > 0.05). Only manual ICV-corrected mVBM analysis was significant after correction for multiple comparisons. Conclusion : The method of ICV measurement greatly affects the sensitivity of hippocampal volumetry and mVBM. Manual ICV normalization showed the ability to detect differences between women with and without MDD for both methods.

배경: 두개강내 용적에 대한 수동과 자동 측정법이 여성 주요 우울증 환자의 해마의 용적측정술과 modulated voxel-based morphometry (mVBM)의 결과에 미치는 영향을 알아보고자 한다. 방법: 21명의 여성 주요 우울증 환자와 성별, 나이의 분포가 비슷한 20명의 여성 정상인을 연구대상에 포함시켰다. 해마와 두개강내 용적은 수동으로 측정하였고, FreeSurfer 프로그램을 이용하여 두개강내 용적을 자동으로 측정하였다. 또한 회색질과 백색질의 부피도 SPM을 이용하여 자동으로 측정하였다. 결과: 수동으로 측정한 두개강의 용적을 통제변인으로 하여 분석한 통계분석의 결과가 FreeSurfer에 의해 측정된 두개강내 용적이나 뇌실질의 용적을 통제변인으로 한 통계분석의 결과보다 우울증 환자의 해마부피 감소와 mVBM 분석의 국조적 부피감소를 보다 민감하게 보여주었다. 수동적인 방법과 FreeSurfer에 의해 측정된 두개강내 용적은 정상인에서는 차이가 없었지만 (p = 0.696), 우울증 환자의 두개강 부피는 FreeSurfer를 이용해 측정한 두 개강의 부피가 더 작았다 (p = 0.000002). 우울증 환자의 전체 회색질의 부피는 수동으로 측정한 두개강의 용적을 통제변인으로 적용하였을 때 정상인의 회색질의 부피보다 작았고 (p = 0.000002), 해마의 부피도 수동으로 측정한 두 개 강의 부피를 통제변인으로 통계처리를 했을 때는 우울증환자의 해마가 뚜렷한 위축을 보였지만 (오른쪽, p = 0.014; 왼쪽, p = 0.004), 다른 측정법을 통제변인으로 했을 때는 유의하지 않았다 (p > 0.05). mVBM 분석에서는 수동으로 측정한 두개강의 부피를 통제변인으로 사용했을 때만 다중비교교정 후에 유의한 결과를 보였다 (FDR p < 0.05). 결론: 수동적인 방법으로 측정한 두개강의 용적이 FreeSurfer에 의해 자동으로 측정된 두개강의 용적이나 뇌실질의 부피보다 해마용적측정술과 mVBM 의 결과에 있어서 더 효율적으로 우울증이 있는 그룹과 없는 그룹의 차이를 보여주는 것에 민감한 결과를 보였다.

Keywords

References

  1. Geuze E, Vermetten E, Bremner JD. MR-based in vivo hippocampal volumetrics: Review of methodologies currently employed. Mol Psychiatry 2005;10:147-159. https://doi.org/10.1038/sj.mp.4001580
  2. Jenkins R, Fox NC, Rossor AM, Harvey RJ, Rossor MN. Intracranial volume and Alzheimer disease: evidence against the cerebral reserve hypothesis. Arch Neurol 2000;57:220-224. https://doi.org/10.1001/archneur.57.2.220
  3. Kruggel F MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage 2006;30:1-11. https://doi.org/10.1016/j.neuroimage.2005.09.063
  4. Geuze E, Vermetten E, Bremner JD. MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Mol Psychiatry 2005;10:160-184. https://doi.org/10.1038/sj.mp.4001579
  5. Jack CR Jr. MRI-based hippocampal volume measurements in epilepsy. Epilepsia 1994 ;35 (Suppl 6):S21-29
  6. Jack CR Jr, Bentley MD, Twomey CK, Zinsmeister AR. MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies. Radiology 1990;176:205-209. https://doi.org/10.1148/radiology.176.1.2353093
  7. Jack CR Jr, Sharbrough FW, Twomey CK, et al. Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation. Radiology 1990;175:423-429. https://doi.org/10.1148/radiology.175.2.2183282
  8. Jack CR Jr, Theodore WH, Cook M, McCarthy G. MRI-based hippocampal volumetrics: data acquisition, normal ranges, and optimal protocol. Magn Reson Imaging 1995;13:1057-1064. https://doi.org/10.1016/0730-725X(95)02013-J
  9. Jack CR Jr, Twomey CK, Zinsmeister AR, Sharbrough FW, Petersen RC, Cascino GD. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology 1989;172:549-554. https://doi.org/10.1148/radiology.172.2.2748838
  10. Luft AR, Skale JM, Welte D, Kolb R, Klose U. Reliability and exactness of MRI-based volumetry: a phantom study. J Magn Reson Imaging 1996;6:700-704. https://doi.org/10.1002/jmri.1880060421
  11. Devanand DP, Pradhaban G, Liu X, et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 2007;68:828-836. https://doi.org/10.1212/01.wnl.0000256697.20968.d7
  12. Grundman M, Sencakova D, Jack CR Jr, et al. Alzheimer's Disease Cooperative Study Brain MRI hippocampal volume and prediction of clinical status in a mild cognitive impairment trial. J Mol Neurosci 2002;19:23-27. https://doi.org/10.1007/s12031-002-0006-6
  13. Jack CR Jr, Petersen RC, Xu YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999;52:1397-1403. https://doi.org/10.1212/WNL.52.7.1397
  14. Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005;162:2233-2245. https://doi.org/10.1176/appi.ajp.162.12.2233
  15. Taki Y, Kinomura S, Awata S, et al. Male elderly subthreshold depression patients have smaller volume of medial part of prefrontal cortex and precentral gyrus compared with age-matched normal subjects: a voxel-based morphometry. J Affect Disord 2005;88:313-320. https://doi.org/10.1016/j.jad.2005.08.003
  16. Bernasconi A. Quantitative MR imaging of the neocortex. Neuroimaging Clin N Am 2004;14:425-436. https://doi.org/10.1016/j.nic.2004.04.013
  17. Leone M, Proietti Cecchini A, Mea E, et al. Functional neuroimaging and headache pathophysiology: new findings and new prospects. Neurol Sci 2007;28:S108-113. https://doi.org/10.1007/s10072-007-0761-9
  18. May A, Matharu M. New insights into migraine: application of functional and structural imaging. Curr Opin Neurol 2007;20:306-309. https://doi.org/10.1097/WCO.0b013e328136c20b
  19. Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp 1999;7:254-266. https://doi.org/10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
  20. Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage 2000;11:805-821. https://doi.org/10.1006/nimg.2000.0582
  21. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21-36. https://doi.org/10.1006/nimg.2001.0786
  22. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851. https://doi.org/10.1016/j.neuroimage.2005.02.018
  23. Steinberg M. Interviewers Guide to the Structured Clinical Interview for DSM-IV Dissociative Disorders (SCID-D). Washington, DC, American Psychiatric Press 1994.
  24. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961;4:561-571. https://doi.org/10.1001/archpsyc.1961.01710120031004
  25. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62. https://doi.org/10.1136/jnnp.23.1.56
  26. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  27. Lemieux L, Hammers A, Mackinnon T, Liu RS Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry. Magn Reson Med 2003;49:872-884. https://doi.org/10.1002/mrm.10436
  28. MacLullich AM, Ferguson KJ, Deary IJ, Seckl JR, Starr JM, Wardlaw JM. Intracranial capacity and brain volumes are associated with cognition in healthy elderly men. Neurology 2002;59:169-174. https://doi.org/10.1212/WNL.59.2.169
  29. Wolf H, Kruggel F, Hensel A, Wahlund LO, Arendt T, Gertz HJ. The relationship between head size and intracranial volume in elderly subjects. Brain Res 2003;973:74-80. https://doi.org/10.1016/S0006-8993(03)02552-6
  30. Eritaia J, Wood SJ, Stuart GW, et al. An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 2000;44:973-977. https://doi.org/10.1002/1522-2594(200012)44:6<973::AID-MRM21>3.0.CO;2-H
  31. Chey J, Na DG, Tae WS, Ryoo JW, Hong SB. Medial temporal lobe volume of nondemented elderly individuals with poor cognitive functions. Neurobiol Aging 2006;27:1269-1279. https://doi.org/10.1016/j.neurobiolaging.2005.07.020
  32. Buckner RL, Head D, Parker J, et al. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 2004;23:724-738. https://doi.org/10.1016/j.neuroimage.2004.06.018
  33. Tae WS, Kim SS, Lee KU, Nam EC, Kim KW. Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 2008;50:569-581. https://doi.org/10.1007/s00234-008-0383-9
  34. Cuadra MB, Cammoun L, Butz T, Cuisenaire O, Thiran JP. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 2005;24:1548-1565. https://doi.org/10.1109/TMI.2005.857652
  35. Duvernoy HM.) The Human Brain: Surface, Three-Dimensional Sectional Anatomy, and MRI. Springer-Verlag, New York 1991.
  36. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika 1951;16:297-334. https://doi.org/10.1007/BF02310555
  37. Fein G, Di Sclafani V, Taylor C, et al. Controlling for premorbid brain size in imaging studies: T1-derived cranium scaling factor vs. T2-derived intracranial vault volume. Psychiatry Res 2004;131:169-76. https://doi.org/10.1016/j.pscychresns.2003.10.003
  38. Hartley SW, Scher AI, Korf ES, White LR, Launer LJ. Analysis and validation of automated skull stripping tools: a validation study based on 296 MR images from the Honolulu Asia aging study. Neuroimage 2006;30:1179-1186. https://doi.org/10.1016/j.neuroimage.2005.10.043
  39. Neumeister A, Wood S, Bonne O, et al. Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 2005;57:935-937. https://doi.org/10.1016/j.biopsych.2005.01.016
  40. O'Brien JT, Lloyd A, McKeith I, Gholkar A, Ferrier N. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. Am J Psychiatry 2004;161:2081-2090. https://doi.org/10.1176/appi.ajp.161.11.2081
  41. Frodl T, Schaub A, Banac S, et al. Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J Psychiatry Neurosci 2006;31:316-323.
  42. Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 2004;161:1957-1966. https://doi.org/10.1176/appi.ajp.161.11.1957