Time Resolution Improvement of MRI Temperature Monitoring Using Keyhole Method

Keyhole 방법을 이용한 MR 온도감시영상의 시간해상도 향상기법

  • Han, Yong-Hee (Department of Biomedical Engineering, Inje University) ;
  • Kim, Tae-Hyung (Department of Biomedical Engineering, Inje University) ;
  • Chun, Song-I (Department of Biomedical Engineering, Inje University) ;
  • Kim, Dong-Hyeuk (Department of Biomedical Engineering, Inje University) ;
  • Lee, Kwang-Sig (Department of Radiology, Pusan Paik Hospital) ;
  • Eun, Choong-Ki (Department of Diagnostic Radiology, School of Medicine, Inje University) ;
  • Jun, Jae-Ryang (Department of Diagnostic Radiology, School of Medicine, Inje University) ;
  • Mun, Chi-Woong (Department of Biomedical Engineering, Inje University)
  • 한용희 (인제대학교 의용공학과) ;
  • 김태형 (인제대학교 의용공학과) ;
  • 천송이 (인제대학교 의용공학과) ;
  • 김동혁 (인제대학교 의용공학과) ;
  • 이광식 (부산백병원 영상의학과) ;
  • 은충기 (인제대학교 의과대학 영상의학과) ;
  • 전재량 (인제대학교 의과대학 영상의학과) ;
  • 문치웅 (인제대학교 의용공학과)
  • Published : 2009.06.30

Abstract

Purpose : This study proposes the keyhole method in order to improve the time resolution of the proton resonance frequency(PRF) MR temperature monitoring technique. The values of Root Mean Square (RMS) error of measured temperature value and Signal-to-Noise Ratio(SNR) obtained from the keyhole and full phase encoded temperature images were compared. Materials and Methods : The PRF method combined with GRE sequence was used to get MR temperature images using a clinical 1.5T MR scanner. It was conducted on the tissue-mimic 2% agarose gel phantom and swine's hock tissue. A MR compatible coaxial slot antenna driven by microwave power generator at 2.45GHz was used to heat the object in the magnetic bore for 5 minutes followed by a sequential acquisition of MR raw data during 10 minutes of cooling period. The acquired raw data were transferred to PC after then the keyhole images were reconstructed by taking the central part of K-space data with 128, 64, 32 and 16 phase encoding lines while the remaining peripheral parts were taken from the 1st reference raw data. The RMS errors were compared with the 256 full encoded self-reference temperature image while the SNR values were compared with the zero filling images. Results : As phase encoding number at the center part on the keyhole temperature images decreased to 128, 64, 32 and 16, the RMS errors of the measured temperature increased to 0.538, 0.712, 0.768 and 0.845$^{\circ}C$, meanwhile SNR values were maintained as the phase encoding number of keyhole part is reduced. Conclusion : This study shows that the keyhole technique is successfully applied to temperature monitoring procedure to increases the temporal resolution by standardizing the matrix size, thus maintained the SNR values. In future, it is expected to implement the MR real time thermal imaging using keyhole method which is able to reduce the scan time with minimal thermal variations.

목적 : 본 연구는 PRF(Proton Resonance Frequency)를 이용한 MR 온도감시 영상에서 시간 해상도를 keyhole방법 적용으로 향상시키고자하였다. 제시된 keyhole방법과 기존 온도영상 방법 사이의 비교를 위해 온도 값에 대한 RMS(Root Mean Square) 오차와 SNR(Signal to Noise Ratio)을 비교하였다. 대상 및 방법 : PRF 방법과 GRE(Gradient Recalled Echo)를 이용하여 MR 온도영상을 구현하였으며 장비로는 임상용 1.5T MRI 장치를 이용하였다. 인체모사 조직인 2% 한천 젤 팬텀과 돼지 근육조직으로 실험을 수행하였다. 2.45GHz대역의 마이크로파 발생장치로 MR호환 동축 슬롯 안테나를 구동하여 MRI장치 내에서 대상 조직과 팬텀을 5분간 가열하였다. 가열 직후 10분 동안에 순차적으로 MR 원 데이터를 획득하였다. 획득된 원 데이터는 PC로 전송되어 전체 위상을 부호화하여 얻은 원 데이터의 바깥영역과 K-space의 중앙 영역을 각각 128, 64, 32, 16으로 위상부호화된 데이터로 keyhole영상을 재구성하였다. 256개로 전체 부호화된 자체-참조 온도영상과 RMS 오차를 비교하였으며, zero-filling 영상과 SNR비교를 하였다. 결과 : keyhole 온도 영상에서 위상부호화 수가 128, 64, 32, 16으로 줄어들수록 RMS 오차로 산출한 온도의 차이가 0.538, 0.712, 0.786, 0.845$^{\circ}C$ 만큼 증가하였으나 SNR 값은 keyhole의 위상부호화 수가 줄어도 유지되었다. 결론 : 본 연구는 고정된 매트릭스 크기에 keyhole 방법 적용을 이용하여 온도 감시에서의 시간해상도 증가와 SNR 값을 유지하는 결과를 도출하여 성공적인 적용을 보여 주었다. 본 연구를 기반으로 한 다음 연구에서는 최적화된 변수를 이용한 keyhole 방법 적용으로 최소 온도 오차의 실시간 MR 온도 감시가 가능할 것이라 예상된다.

Keywords

References

  1. Ishihara Y, Calderon A, Watanabe H, et al, A precise and fast temperature mapping method using water proton chemical shift, Magn Reson Med, 1995;34:814-823. https://doi.org/10.1002/mrm.1910340606
  2. J. De Poorter, C.De Wagter, Y.De Deene, C. Thomsen, F. Stahlberg, and E. Achten, Noninvasive MRI thermometry with the proton resonance frequency(PRF) method: In vivo results in human muscle, Magn Reson Med, 1995;33:74-81. https://doi.org/10.1002/mrm.1910330111
  3. R. Salomir, J. palussiere, N. Grenier, E. Dumont, B. Quesson, and T. Tsukamoto, Local hyperthermia with focused ultrasound( FUS) or interstitial laser applicator(LITT) under PRFbased MR-temperature monitoring in the living kidney of the rabbit, Proceedings of the 10th Annual Meeting of ISMRM, Honolulu, Hawaii, 2002;2202.
  4. S. Morikawa, T. Inubushi, Y. Kurumi, S. Naka, V. Seshan, and T. Tsukamoto, Feasibility of simple respiratory triggering in MR-guided interventional procedures for liver tumors under general anesthesia, Proceedings of the 10th Annual Meeting of ISMRM, Honolulu, Hawaii, 2002;2240.
  5. Igor Sers, Jure Medic, Katarina Beravs, et al, Fast keyhole MR Imaging using optimized k-space data acquisition, Electro and Magnetobiology, 1998;17:307-321 https://doi.org/10.3109/15368379809022575
  6. Zhaolin Chen, Jingxin Zhang, and Khee K. Pang, Adaptive keyhole methods for dynamic magnetic resonance image reconstruction, Computerized Medical Image and Graphics, 2007;31:458-468. https://doi.org/10.1016/j.compmedimag.2007.04.005
  7. Mikio Suga, Tetsuya Matsuda, Masaru Komori, Kotaro Minato, and Takashi Takahashi, Keyhole method for highspeed human cardiac cine MR imaging, J Mag Reson Imaging, 1999;10:778-783. https://doi.org/10.1002/(SICI)1522-2586(199911)10:5<778::AID-JMRI23>3.0.CO;2-2
  8. T.H. Kim, K.C. Tan, S.I. Chun, K.S. Choi, Y.H. Han, and C.W. Mun, Computer simulation and temperature measurement for MR hyperthermia therapy using coaxial-slot antenna, Proceedings of the 17th Annual Meeting of ISMRM, Hawaii, 2009; 4413.
  9. Schwarzmaier HJ, and Kahn T. Magnetic Resonance Imaging of microwave induced tissue heating, Magn Reson Med, 1995;33:729-731 https://doi.org/10.1002/mrm.1910330519
  10. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, 1998, John Wiley & Sons, New York
  11. J. Bioucas-Dias and G. Valad-o, Phase Unwrapping via graph cuts, IEEE Transactions on Image Processing, 2007;16:698-709. https://doi.org/10.1109/TIP.2006.888351
  12. Kee Chin Tan, Tae Hyung Kim, Song I Chun, et al, Preliminary study on the MR temperature mapping using center array-sequencing phase unwrapping algorithm, J Korean Soc Magn Reson Med, 2008;12:131-141.