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Abstract

In this paper we consider the specific types of the generalized continuous-time Lyapunov equation and the existence of
solution. This is motivated to analyze the system stability in situations where descriptor system has infinite eigenvalue. As
main results, firstly the necessary and sufficient condition for stability of the descriptor system with index one or two will
be proposed. Secondly, for the general case of any index, the similar condition for stability of descriptor system will be
proposed with the specific type of the generalized Lyapunov equation. Finally some examples are used to show the validity
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of proposed methods.
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1. INTRODUCTION

For last decades there have been many studies on
the generalized Lyapunov equation and stability
analysis. Lyapunov equations arise not only in the
stability analysis but also in many other applications
such as system and control theory, eigenvalue
problems” ?.  Especially when the stability and
control design problems of descriptor system are

" A, RS E AR
(Department of Electronics and Information,
Konyang University)

A 200812984, A YEY: 2009d793Y

@87

considered, the standard Lyapunov equation is
extended to the generalized Lyapunov equation. Such
naturally many

applications such as multibody dynamics, electrical

descriptor ~ systems  arise in

circuit  simulation, chemical engineering and
semi-discretization of partial differential equaﬁons[gw 1
The generalized continuous-time algebraic Lyapunov
(GCALE) E"XA+A'XE--G

considered, where E,A,G are given matrices and X is

equation have Dbeen
an unknown matrix. By using the concept of
controllability and observability of descriptor system,
the descriptor system can be transformed to balanced

system, and various model reduction techniques and
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its applications also received a lot of interests®” .

On the other hand many numerical algorithms
were developed for the GCALE with nonsingular
matrix E. However, for the case of singular matrix E
only little attention has been paid to the generalized
Lyapunov equations™ 7. It is known that the GCALE
has a unique solution for every G if the matrix E is
nonsingular and all the eigenvalues of the pencil
AE-A have negative real part. However, if E is
singular, then the GCALE may have no solutions
even if all the finite eigenvalues of AE-A lie in the
open left half-plane and if the equation has a
it is not unmique. To overcome these
difficulties various types of generalized Lyapunov
equations

solution,
have been proposed, however, these
equations are mostly limited to the case of pencils of
index at most one®™,

In this paper we consider the specific types of the
generalized continuous—time Lyapunov equation and
the existence of solution. This is motivated to
analyze the system stability in situations where
descriptor system has infinite eigenvalue. In the
following chapter I the descriptor system and
mathematical preliminaries will be discussed In
chapter I, as main results of this paper, firstly the
necessary and sufficient condition for stability of the
descriptor system with index one or two will be
proposed. Secondly, for the general case of any index,
the similar condition for stability of descriptor system
will be proposed with the specific fype of the
Finally
examples are used to show the validity of proposed

generalized Lyapunov  equation. some

methods.

II. LINEAR DESCRIPTOR SYSTEM

Consider a linear time-invariant continuous-time
system

Ex(f) = Ax(t) + Bu(f)
YO =Cx(r),

oy
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where EAER™, BER™", CeR™ x(t) is the
state vector, w(t)ER™ is the control input, y(t)&RP
is the output. If E=I, then (1) is a standard state
space system. Otherwise, (1) is a descriptor system
or generalized state space system. Assume that the
pencil AE-A is regular, ie., det(AE-A)=0 for some
A€C. In this case AE-A can be reduced to the
Weierstrass form™®  There

nonsingular matrices W and T such that

I, o J 0
E:W[(';’ N]T’ A=W[0 1,,_]T'
Where Ir is the identity matrix of order k, J is the
Jordan block corresponding to the finite eigenvalues
of AE-A, N is nilpotent and corresponds to the
infinite eigenvalues, The index of nilpotency of N,

denoted by v, is called the index of the pencil AE-A.
The nilpotent matrix N has the following form

canonical exist

@

3)

The index v is the size of the nilpotent block.
Clearly, N°'#0 and N'=0. If the matrix E is
nonsingular, then AE-A is of index zero. The pencil
AE-A is of index one if and only if it has exactly
n~rank(E) finite eigenvalues. The pencil AE-A4 is
called c-stable if it is regular and all the finite
eigenvalues of AE-A lie in the open left half-plane.
And clearly, the pencil AE-A has an eigenvalue at
infimity if and only if the matrix E is singular.
Representation (2) defines the decomposition of R"
into complementary deflating subspaces of dimensions
n, and ne corresponding to the finite and infinite
eigenvalues of the pencil AE-A, respectively. The
matrices

I 0 I
P’ - T—l A T, B =W ¢
0 0 0

are the spectral projections onto the right and left
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deflating subspaces of AE-A corresponding to the
finite eigenvalues. Descriptor system (1) can be
changed to the system with the Welerstrass canonical
form

%(6) = Jx, () + Bu(r)
Ni, () = x, (1) + Bu(t) W 'B= L’i !

}. cri=[c ¢l
¥ =Cx(H)+Cx, (1) ’

)

It is well known that computing the Weierstrass
canonical form in finite precision arithmetic is, in
general, an ill-conditioned problem in the sense that
small changes in the data may extremely change the
canonical form. Now consider the GCALE

E" XA+ A" XE =-G. 6)

For the case of nonsingular E the following theorem
is satisfied.

Theorem 1[1]: Let AE-A be a regular pencil. If
all eigenvalues of AE-A are finite and lie in the open
left half-plane, then for every positive (semi)definite
matrix G, the GCALE (6) has a unique positive
(semi)definite solution X. Conversely, if there exist
positive definite matrices X and G satisfying (6), then
all eigenvalues of the pencil AE-A are finite and lie
in the open left half-plane, n

However, many applications of descriptor systems
lead to generalized Lyapunov equations with a
singular matrix E, In the case of singular E the
GCALE (6) may have no solutions even if all finite
eigenvalues of the pencil AE-A have negative real
part.

II. GENERALIZED LYAPUNOV EQUATION
AND STABILITY ANALYSIS

In this chapter we consider the specific types of
the generalized continuous—time Lyapunov equation
and the existence of solution. And the necessary and

(289)
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sufficient condition for stability of the descriptor
system is proposed. The following lemma gives the
sufficient conditions for

necessary and unique

solvability of the generalized Sylvester equation.

Lemma 1[11]: The generalized Sylvester equation

BXA-FXE =-G (7

has a unique solution X if and only if the pencils
AB-F and AE-A are regular and they have no
common eigenvalues. Where ABEF,GER™ are
given matrices and XER™s an unknown matrix. Il

A consideration of the GCALE (6) with another
special right-hand side is useful since for such an
equation, the existence theorems can be stated.

Theorem 2. let AE-A be a regular pencil of
index at most two. If AE-A is c-stable, then for
every matrix G, the GCALE

E' XA+ A"XE=—E(E-A"G(E-A)"E, (8

has a solution. Where it is assumed that E-A is a
nonsingular matrix.

Proof: Let the pencil AF-A be in Welerstrass
canonical form (2), where the eigenvalues of J lie in
the open left half-plane. Let the matrices

G =T7GT" = Gn G,
n GZT‘Z Gr, '

P P
P=Wixw= . ? 9
B PR
be defined and partitioned in blocks conformably to £
and A with Welerstrass canonical transform matrices
T and W. Then we have
WETY W XWW AT Y+ AT W XW (W ET )
=W ErY W ET" ~w4T Y TG
<(WET™ W AT Y W 'ET™),

(10)
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BJ+J'R=~(l, ~JY" G, ~JY"
B+J'RN=~1,~JyY G (N-1,)'N
N'B/J+ B =-N"(N-1,)7G" (1, -J)"
N'R+BN=-N'(N-1,) G (N-I,Y'N,

11)

U=-NTG, =Ty >0,

Since all eigenvalues of J have negative real part,
the first Lyapunov equation of (11) has a unique
positive definite solution P; for every positive definite
G using theorem 1. And let the left hand side
matrices of the equation in Sylvester equation (7)
B=I, A=I, F=J', and E=-N then the Sylvester
equation is same as the second equation of (11). (4
I-J) and (-AN-I) are regular and have no common
because  (AI-J9) only finite
eigenvalues and (-AN-I) has infinite eigenvalues.
Therefore, from lemma 1, the second equation of (11)

eigenvalues has
has a unique solution. We can see that
B=—(I-N7G,(N-D)'N 12)

because N=0 or NxN=N'xN'=0 by assumption. The
solution of the last equation of (11) is not unique for
every Gy, for example the matrix

Yror -7 -
B= {NTWN =17 Gy, + GV - 1)V} (13)

can be a solution. For the case of index two we have

N'P+PN= —;-NT [N'(N-D7 G +G, (N-I)" N}
+%{NT(N-1)‘T Gy +Gr (N -I)'N}N

= %N’G”(N -I)"N+%N’ (N-Iy"G,,N

g4z:|
8u

(14)

0 o
=]: :’, where G, = l:g“
0 -g4 En

from the left hand side of last eguation of (11). And
from the right hand side of the equation we can have
the same matrix. G is positive definite, then also GT1
is positive definite and, hence, the solution P1 is

positive definite. n
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Theorem 3. Let AE-A be a regular pencil of
index at most two. Let G be a positive definite
matrix. The solution of GCALE (8) is positive
definite on the subspace Im(P) if and only if AE-A
is c-stable. Where E-A is a nonsingular matrix and
Im(P;) means the range space of P

Proof: The symmetric matrix

B P
; 2 W—l
Bl P,

4

X = W{ (15)
satisfies the GCALE (8). If AE-A is c-stable then P;
is positive definite for positive definite G and G
Therefore X is positive definite on the subspace
Im(P). That is, for z&Im(P)), we have

=77 ﬂ_’][i‘ O}Bjﬂiﬂ’ﬂﬁo-
(16)

Conversely if X is positive definite on Im(P), the
matrix

B BN
1 2 }T

E"XE=TT
{ NTE NTEN an

is positive definite on Im(P,). And the matrix

EN(E-A)"GE-AE
A U DTG, - {, -y G, (N-1,)'N
TN N-L TG, - N1, G (N =1 )N

(18)

is also positive definite on Im(P) because Gz >0
and (I- ) "Gr(I-])">0. Let §=0 be an eigenvector
of the pencil AE-A corresponding to a finite
eigenvalue A, that is, AEFAL [ is a vector in
Im(P;). Multiplication of (8) on the right and left by
7 and &, respectively, gives
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~§T{ET(E-4)"GE~4)'E}{
=T (E" X4+ A" XEY, = ALTET XEL + AL TET XE¢
=2Re{A}TETXES < 0,
(19)

Since E°XE is positive definite on Im(P,), we obtain
that 2Re{A}<0, ie., all finite eigenvalues of AE-A lie
in the open left half-plane. [ ]

Corollary 1° let AE-A be a regular pencil and
the index of AE-A be at most one. Let G be a
symmetric positive definite matrix. The GCALE (8)
has a symmetric positive (semi)definite solution X if
and only if AE~A is c-stable.

Proof: If the pencil AE-A is of index at most one
and c-stable, then from the proof of theorem 3 we
obtain the matrix

x=wr| 5 Oy
0 B

And it satisfies the GCALE (8). Here P; is a unique
symmetric positive definite solution of the first
equation of (11) and P; is an arbitrary symmetric
positive (serni)definite matrix. In this case X is the
symmetric positive (semi)definite solution of (8).
Now assume that AF-A is at most one and the
GCALE (8) has a symmetric positive (semi)definite
solution X with symmetric positive definite G The
matrix P»=0 is a umique solution, and Ps is an
arbitrary matrix, Using Schur complement[m,

20)

A A 7 pet
P op >0 & B>0, B~ P F'A>0
2 4

[P‘ PZ}ZO < P>0, B,—- P P'P>0 W
1)2T 134 1 b 4 271 2

P; should be positive definite and P, should be
positive (semi)definite because X is the symumetric
positive (semi)definite solution. Therefore AE-A is
c-stable. |

In the following theorem 4 we consider specific

(291)
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type of the generalized Lyapunov equation and
propose the necessary and sufficient condition for the
c-stable descriptor system (1) with nonsingular E
and any index.

Theorem 4: Let AE-A be a regular pencil and let
G be a symmetric positive definite matrix. The
GCALE

E" X4+ A" XE =-M"(G+A )M,

g 22)
M=Ilor M=(E-A ' F

has a symmetric positive semidefinite solution X if
and only if AE-A is c-stable with any index. Where
Gao=(G+ 24, is also a specifically defined positive
semidefinite matrix such that

T=T"(G ) =TT (G+A)T

T G, 0
= r,; el 120, G >0 @)
mr|lo o
Where W, T, are the Welerstrass canonical

transformation matrices and it is assumed that E-A

is a nonsingular matrix.

Proof: Let the pencil AE-A be in Welerstrass
canonical form (2). First of all, assume that the
eigenvalues of J lie in the open left half-plane so
AE-A is c-stable. Then we have

A, =T'TT-G

0 -G, . (24)

=T (-G =T" T
( T) ['Grrz -GT4

And Gao=G+4, is positive semidefinite if and only if
I is positive semidefinite for nonsingular 7 and
symmetric
semidefinite matrix G, for every possible positive
definite matrix G. Then from (22) and (10) we have

So there exists the positive

G oo

WET 'YW XW W AT Y+ W AT Y W XWW ™ ET ™)
=-T7(G+A,)T", M=
=—H'TT(G+A)'H, M=(E-A"E

H =W ET —W AT Y W 'ET™)

(25)
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BJ+J'B=-G,, M=I

BI+J B=—~(1-~-N7"G,(I-J)", M=(E-A"E
B+J'BN=0, N PJ+P =0

N'P,+PN=0

(26)

Since all eigenvalues of J have negative real part,
the first and second standard Lyapunov equation of
(26) have a unique positive definite solution P; for
every positive definite Gy using theorem 1. The third
two equations in (26) are uniquely solvable using
lemma 1 and have the trivial solutions Py=0 and the
last equation of (26) is not uniquely solvable. But we
can have simple trivial solution P;=0. Therefore there
exist positive semidefinite matrices P and
X=wTPw

Conversely if the positive semidefinite solution of
(22) exists with the positive semidefinite matrix Gao
for a positive definite G, it is obtained as a block
diagonal form same to (20). Where Po=0, and it is a
unigue solution, but Py is not necessarily zero matrix.
From Schur complement equation (21) P; should be
positive definite and Ps; should be positive
semidefinite because X is the symmetric positive
semidefinite solution. As a result the pencil AE-A is
c-stable with any index because P; is positive
definite with G>0 and (I-J) "Gri(I-J) >0 and the
proof is completed. B

In the case that G is positive semidefinite, the
existence of the GCALE solution can be considered
as a necessary condition the descriptor system to be
c-stable. The dual GCALE can be obtained as
theorem 5.

Theorem 5 Let AE-A be a regular pencil and let
F be a symmetric positive definite matrix. The
GCALE

EYA" + AYE" =~M(F +A)M",

M=Ior M=E(E-A4)" @n

has a symmetric positive semidefinite solution Y if
and only if AE-A is c-stable with any index. Where
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let the matrices

FWI FW2
F;/‘Z FW4

o

F, =W 'Fw’ {
i o4

], Q=m’=[ gﬂ (28)
are defined and partitioned in blocks conformably to
E and A And F.o=F+4A; is also a specifically

defined positive semidefinite matrix such that

A=W EW T =W (F+A W7

29

= A; Al _[Fn Oy, Fyy >0. @)
A, A, 0 0

Where W, T, are the Welerstrass canonical

transformation matrices and it is assumed that E-A
is a nonsingular matrix.

Proof: 1t is similar to the proof of theorem 4. First
of all, assume that AE-A is c-stable, we have

A, =WAW'-F

r [ 0
=W(A-F, W =W

T
-F w2

—FWZ}W, (30)
~F; w4

And Fa=F+A. is positive semidefinite if and only
if A is positive semidefinite for nonsingular W and
symmetric Fa. So there exists the positive
semidefinite matrix F.. for every possible positive

definite matrix F. Then from (27) we have

W ETHYIYT W AT + W AT HTYTT (W ET™Y

=W (F+A W, M=I
=-KW ' (F+A WK, M=EE-4"
K=(W ' ETYW 'ET"' -w A1)
&1Y)
QJ"+JQ, =-F,, M=I

0J" +JQ, =—(I-J)'F,,(I~-J)", M=E®E~-4)"
0,+JO,N" =0, NQ[J +Q; =0
NQ,+Q,NT =0

(32)
Since all eigenvalues of J have negative real part,

the first and second standard Lyapunov equation of
(32) have a unique positive definite solution @; for
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every positive definite Fw; using theorem 1. The
third two equations in (32) are uniquely solvable
using lemma 1 and have the trivial solutions =0
and the last equation of (32) is not uniquely solvable.
But we can have simple trivial solution Q0.
Therefore there exist positive semidefinite matrices @
and Y=T"QT™.

Conversely if the positive semidefinite solution of
(27) exists with the positive semidefinite matrix Fa.
for a positive definite F, it is obtained as

Y=T“’{Q‘ O}T"T.
0 9

Where @:=0, and it is a unique solution, but @y is

(33)

not necessarily zero matrix. From Schur complement
equation (21) @; should be positive definite and Qs
should be positive semidefinite because Y is the
symmetric positive semidefinite solution. As a result
the pencil AE-A is c-stable with any index because
& positive  definite  with Fw/>0 and
(I-])" Fus(I-J) ™0 and the proof is completed. W

18

For the case of theorem 4 and 5 we can give the
conditions P=0 and Q0 to find the numerical
solution uniquely. And these results which are
proposed in this paper can be extended to the linear
discrete-time descriptor system.

IV. NUMERICAL EXAMPLE
Consider the following c-stable continuous-time
descriptor system as a numerical example. Where the

index of nilpotent is two, we can easily see that
there is no solution of standard Lyapunov equation

(6).
00 100 200 Iy
1 0}, E={0 0 1}, G=|0 1 o], P=|p,
01 600 001 P

From (6) and (8) we have

P2 Pi
Py Py
Py Py

(203)
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D+ DR =2 = p, =1 for (6),

1 1 1 .
p(-D+(-Dp, = _2(2)="‘2‘ = Pn =Z for (8),

01
[pxz P13]+("1)[Plz pn][o 0]=[P12 Pm'plz]
=[0 0] for(6)and(8)
I:O 0}[:1722 P23}+[P22 st}{o 1}
L 0jlpys Py P P }|0 O
1 0
A
Py PutDPy 01

00
= -L) J for (8).

And the solution of (8) exists by Theorem 3. But it
isn't a unique solution.

025 0 0
P= 0 0 -05],
0 05 p,

We can get pw=0 from (13). Where Py can not be a
positive definite and it is indefinite for every ps.
Now consider the c-stable descriptor system with
index one.

-1 0) o] o f? 0,p=[1’“ pu}
0 1 0 0 01 Py Pn
Finding the solution of (6) and (8) by the similar

method, we have

A

(D +(-Dp,=-2 = p, =1 for (6),

1 1 1
py(=-D+{=bHp, =_Z(2)=_§ = In =Z for (8),
P +(Hpp(0)=p, =0,

©)py, +p,(0)=-1
=0

for (6),
for (8).

In this example there is alsc no solution of (6),
from the Corollary 1 if the system is c-stable, then
P and X can be positive (semi)definite matrices as
the (p22=0)pz>0.
Conversely if the (semi)definite solution X exists,

selecting proper matrix to
then P; is necessarily positive definite matrix for the

X, and hence, the descriptor system is c-stable. Now
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consider the c¢-stable descriptor system with index

three.
<1 0 0 0 1 000
0 .
4 100 . E= 0010 ,
0 010 0001
L0 0 01 0000
2 0 0 ¢ Py Po2 Pz Pu
G= 0100 . P= Py Py Py Pn
0010 P Pyn Py Pi
10 0 01 Pu Pu Dy Pa

From (6), (8) and (22) we have

Pu(-D+(Dpy=-2 = p, =1
for (6) and (22} with M =1,

PuD+EDP =5 D=1 = =g

4
for (8) and (22)with M =(E - A)'E,

610
[P)z Pis P14]+('1)[P12 P pulj0 01

0 00
=[P12 Pu— P Plc"pls]:[o 0 0]’
00 Pn Pn Py Pn Pu Pu|l0 1 0
10 P Psa Pu |t P Pn Pu |0 01
01 Py Pus Pu Py Pujl0 0 O
23 100
{ P23+P23 Pza*Pas} ='{0 1 Ol for (6),
P PutPu PutPy 001
000
=—]:0 1 1] for(8),
01 2
000
=-10 0 0 for (22).
000

For (6) and (8) there is no solution, in the case of
(22),

p, 00 O

6o 0 0 p,| 1

0 0 p, OF Pu 2’ Dyt Py =0
0 py 0 py

In this equation if elements pszs and py are selected
properly, then solution P and X can be positive
semidefinite. Conversely if the semidefinite solution X
exists, then P; is necessarily positive definite matrix

UPBE Lyapunov Y$HAE 0|88 descriptor A2H S OPFA 84
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for the X using Schur complement of (21), and hence,
the descriptor system is c-stable.

V. CONCLUSIONS

In this paper we have proposed the specific types
of the generalized Lyapunov equation and have found
the solutions for stability of the descriptor system
with singular E. Firstly The necessary and sufficient
condition for stability of the descriptor system with
index one and two were proposed. Secondly, for the
general case of any index, the similar condition for
stability of descriptor system was proposed with the
specific type of the generalized continuous-time
Lyapunov equation. In the future it needs to study
for the applications of the generalized Lyapunov
equation with singular E.
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