유해가스 차단시스템용 MEMS 가스 센서

MEMS based on nanoparticle gas sensor for air quality system

  • 이의복 (고려대학교 전자전기공학과) ;
  • 박영욱 (고려대학교 전자전기공학과) ;
  • 황인성 (고려대학교 신소재공학과) ;
  • 김선중 (고려대학교 신소재공학과) ;
  • 차정호 ((주)세주엔지니어링) ;
  • 이호준 ((주)세주엔지니어링) ;
  • 이종흔 (고려대학교 전자전기공학과) ;
  • 주병권 (고려대학교 전자전기공학과)
  • Lee, Eui-Bok (School of Electronics & Electrical Engineering, Korea University) ;
  • Park, Young-Wook (School of Electronics & Electrical Engineering, Korea University) ;
  • Hwang, In-Sung (Department of Materials Science & Engineering, Korea University) ;
  • Kim, Sun-Jung (Department of Materials Science & Engineering, Korea University) ;
  • Cha, Jun-Gho (Seju Engineering Co. Ltd.) ;
  • Lee, Ho-Jun (Seju Engineering Co. Ltd.) ;
  • Lee, Jong-Heun (Department of Materials Science & Engineering, Korea University) ;
  • Ju, Byeong-Kwon (Department of Materials Science & Engineering, Korea University)
  • 투고 : 2009.12.19
  • 발행 : 2009.12.30

초록

본 연구에서는 졸겔법으로 ZnO, 수열합성법으로 $SnO_2$ 나노분말을 제조하고 이들 나노분말에 Pd, Ru 등의 촉매를 첨가하였다. MEMS 기술로 제작된 히터 및 전극 구조 위에 나노 감지 분말을 도포하여 CO and $NO_2$ 가스 센서를 제작하였다. 0.1 wt% Pd 도핑된 $SnO_2$ 가스센서와 Ru 도핑된 ZnO 가스 센서는 각각 CO 30 ppm, $NO_2$ 1 ppm의 낮은 농도에서도 높은 감지 특성을 보였다.

In this study, nanopower ZnO and $SnO_2$ as sensing materials were prepared by hydrazine and hydrothermal routes, respectively, and were doped with Pd, Ru catalyst. The CO and $NO_2$ sensors were fabricated by coating of sensing materials on the MEMS-based structure with electrodes and heaters. The 0.1 wt% Pd doped $SnO_2$ sensor and Ru doped ZnO sensor showed the high sensor response to CO 30 ppm and $NO_2$ 1 ppm, respectively. The sensor signal was stable. This can be used for the detection of pollutant gases emitted from gasoline engine.

키워드

참고문헌

  1. H. Nakagawa, S. Okazaki, S. Asakura, K. Fukuda ,H. Akimoto, S. Takahashi and S. Shigemori "An automated car ventilation system, thin film gas sensor," Sens. Actuators B, 65, pp. 133-137, 2000. . https://doi.org/10.1016/S0925-4005(99)00412-8
  2. N, Barsan, U. Weimar, "Conduction model of metal oxide gas sensors", J. Electroceramics. 7, 143, 2001 https://doi.org/10.1023/A:1014405811371
  3. G. Sberveglieri, "Recent developments in semiconducting thin film gas sensors", Sens. Actuators B 23, 103, 1995 https://doi.org/10.1016/0925-4005(94)01278-P
  4. A. Komakov, YZhang, ""Detecion CO and O2 using tin oxide nanowires sensors", Adv. Mater. p. 15, 997, 2003 https://doi.org/10.1002/adma.200304889
  5. C.N. Xu, J. Tamaki, N. Miura and N. Yamazoe, "Grain size effects on gas sensitivity of porous $SnO_2$-based elements, Sens. Actuator B 3, pp. 147–155, 1991 https://doi.org/10.1016/0925-4005(91)80207-Z
  6. J. Watson, ""The tin oxide gas sensor and its application"", Sens. Actuators 5, pp. 29-42.1984 https://doi.org/10.1016/0250-6874(84)87004-3
  7. Hae-Ryong Kima, Kwon-Il Choi, Jong-Heun Lee, and Sheikh A. Akbarb, "Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical $SnO_2$ spheres " Sens. Actuator B 136, pp 138-143, 2009 https://doi.org/10.1016/j.snb.2008.11.016
  8. N. Yamazoe, N. Mimura,Chemical Sensor Technology, Jpn., Vol.5, pp.19-42, 1992
  9. E. B. Lee, C. H. Yeo, "A Micro-Electromechanical System Based Hydrogen Gas Sensor ", Sensor Lett. 6, pp. 1014–1018, 2008 https://doi.org/10.1166/sl.2008.552
  10. N. Yamazoe, Y. Kurokawa, "Effects of additives on semiconductor gas sensors", Sens. Actuators B 4, p. 283, 1983 https://doi.org/10.1016/0250-6874(83)85034-3
  11. Q. Pan, J. Xu, "GAs sensitivie properties of nanometer sized $SnO_2$", Sens. Actuators B 66, p. 237, 2000 https://doi.org/10.1016/S0925-4005(00)00379-8
  12. R. Diaz, J. Arbiol, "Electroless addition of catalytic Pd to $SnO_2$ nanopowders", J. AM. Chem. Soc. 13, p. 4362, 2001