DOI QR코드

DOI QR Code

Approximation of Common Fixed Points for a Family of Non-Lipschitzian Mappings

  • Kim, Tae-Hwa (Division of Mathematical Sciences, Pukyong National University) ;
  • Park, Yong-Kil (Department of Liberal Arts, Hanzhong University)
  • Received : 2009.09.25
  • Accepted : 2009.11.16
  • Published : 2009.12.31

Abstract

In this paper, we first introduce a family S = {$S_n$ : C ${\rightarrow}$ C} of non-Lipschitzian mappings, called total asymptotically nonexpansive (briefly, TAN) on a nonempty closed convex subset C of a real Banach space X, and next give necessary and sufficient conditions for strong convergence of the sequence {$x_n$} defined recursively by the algorithm $x_{n+1}$ = $S_nx_n$, $n{\geq}1$, starting from an initial guess $x_1{\in}C$, to a common fixed point for such a continuous TAN family S in Banach spaces. Finally, some applications to a finite family of TAN self mappings are also added.

Keywords

References

  1. Ya. I. Alber, C. E. Chidume and H. Zegeye, Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory and Appl., 2006(2006), article ID 10673, 20 pages.
  2. R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., 65(1993), 169-179. https://doi.org/10.4064/cm-65-2-169-179
  3. C. E. Chidume and E. U. Ofoedu, Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings, J. Math. Anal. Appl., 333(2007), 128-141. https://doi.org/10.1016/j.jmaa.2006.09.023
  4. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
  5. K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
  6. G. E. Kim and T. H. Kim, Mann and Ishikawa iterations with errors for non-Lipschitzian mappings in Banach spaces, Comput. Math. Appl., 42(2001), 1565-1570. https://doi.org/10.1016/S0898-1221(01)00262-0
  7. W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math., 17(1974), 339-346. https://doi.org/10.1007/BF02757136
  8. M. O. Osilike, S. C. Aniagbosor, and B. G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, PanAm. Math. J., 12(2002), 77-88.
  9. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
  10. K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178(1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309