KYUNGPOOK Math. J. 49(2009), 349-353

Coefficient Estimates in a Class of Strongly Starlike Functions

JANUSZ SOKÓŁ Department of Mathematics Rzeszów University of Technology ul. W. Pola 2, 35-959 Rzeszów, Poland e-mail: jsokol@prz.edu.pl

ABSTRACT. In this paper we consider some coefficient estimates in the subclass SL^* of strongly starlike functions defined by a certain geometric condition.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the unit disc $\mathcal{U} = \{z : |z| < 1\}$ on the complex plane \mathbb{C} . Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions normalized by f(0) = 0, f'(0) = 1. Everywhere in this paper $z \in \mathcal{U}$ unless we make a note. We say that an analytic function f is subordinate to an analytic function g, and write $f(z) \prec g(z)$, if and only if there exists a function ω , analytic in \mathcal{U} such that $\omega(0) = 0$, $|\omega(z)| < 1$ for |z| < 1 and $f(z) = g(\omega(z))$. In particular, if g is univalent in \mathcal{U} , we have the following equivalence

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\mathcal{U}) \subseteq g(\mathcal{U}).$$

Let us denote $Q(f, z) = \frac{zf'(z)}{f(z)}$. The class $SS^*(\beta)$ of strongly starlike functions of order β

$$\mathcal{SS}^*(\beta) := \{ f \in \mathcal{A} : |\operatorname{Arg} Q(f, z)| < \beta \pi/2 \}, \quad 0 < \beta \le 1$$

was introduced in [5] and [1]. For $\beta = 1$ this class becomes the well known class S^* of starlike functions. In this paper we consider the class $S\mathcal{L}^*$:

(1)
$$\mathcal{SL}^* := \{ f \in \mathcal{A} : |Q^2(f, z) - 1| < 1 \}.$$

It is easy to see that $f \in S\mathcal{L}^*$ if and only if $Q(f, z) \prec q_0(z) = \sqrt{1+z}$, $q_0(0) = 1$. We observe that $\mathcal{L} := \{w \in \mathbb{C} : \operatorname{Re} w > 0, |w^2 - 1| < 1\}$ is the interior of the right half of the lemniscate of Bernoulli $\gamma_1 : (x^2 + y^2)^2 - 2(x^2 - y^2) = 0$, see Figure 1. Moreover $\mathcal{L} \subset \{w : |\operatorname{Arg} w| < \pi/4\}$, thus $S\mathcal{L}^* \subset SS^*(1/2) \subset S^*$. The class $S\mathcal{L}^*$ was introduced in [4] and there the authors give also the following representation formula.

Received July 14, 2008; accepted September 12, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 30C50, 30C45.

Key words and phrases: analytic functions; starlike functions; k-starlike functions; strongly starlike functions.

Janusz Sokół

Theorem A([4]). The function f belongs to the class $S\mathcal{L}^*$ if and only if there exists an analytic function $q \in \mathcal{H}$, q(0) = 0, $q(z) \prec q_0(z) = \sqrt{1+z}$, $q_0(0) = 1$ such that

(2)
$$f(z) = z \exp \int_{0}^{z} \frac{q(t) - 1}{t} dt.$$

Let $q_1(z) = \frac{3+2z}{3+z}, q_2(z) = \frac{5+3z}{5+z}, q_3(z) = \frac{8+4z}{8+z}$. Because $q_i(z) \prec q_0(z),$

i = 1, 2, 3, then by (2) we obtain that the functions $f_1(z) = z + \frac{z^2}{3}$, $f_2(z) = z(1 + \frac{z}{5})^2$, $f_3(z) = z(1 + \frac{z}{8})^3$ are in \mathcal{SL}^* . If we take $q_0(z) = \sqrt{1+z}$, $q_0(0) = 1$ then we obtain from (2) the function f_0

(3)
$$f_0(z) := \frac{4z \exp(2\sqrt{1+z}-2)}{(1+\sqrt{1+z})^2} = z + \frac{1}{2}z^2 + \frac{1}{16}z^3 + \frac{1}{96}z^4 - \frac{1}{128}z^5 + \cdots$$

Rønning considered in [3] an analogously defined class connected with a parabolic region:

$$\mathcal{S}_p^* := \{ f \in \mathcal{A} : \operatorname{Re}[Q(f, z)] > |Q(f, z) - 1| \}.$$

Kanas and Wiśniowska introduced in [2] the concept of a k-starlike functions

$$k - ST := \{ f \in \mathcal{A} : \operatorname{Re}[Q(f, z)] > k | Q(f, z) - 1 | \}, k \ge 0.$$

In this way they obtained a continuous passage from starlike functions (k = 0) to the class S_p^* (k = 1). Moreover for 0 < k < 1 the quantity Q(f, z) takes its values

350

in a convex domain on the right of a hyperbola while for k > 1 inside an ellipse. Let us consider the conic region $P(k) = \{w \in \mathbb{C} : \text{Re } w > k|w-1|\}$ connected with the class k - ST described above. For k > 1 the curve $\partial P(k)$ is the ellipse $\gamma_2 : x^2 = k^2(x-1)^2 + k^2y^2$. For $k \ge 2 + \sqrt{2}$ this ellipse lies entirely inside $\overline{\mathcal{L}}$. Therefore $k - ST \subset S\mathcal{L}^*$, for $k \ge 2 + \sqrt{2}$.

2. Main results

Theorem 1. If the function $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ belongs to the class SL^* , then

(4)
$$\sum_{k=2}^{\infty} (k^2 - 2) |a_k|^2 \le 1.$$

Proof. If $f \in S\mathcal{L}^*$, then $Q(f, z) \prec q_0(z) = \sqrt{1+z}$. Hence $Q(f, z) = \sqrt{1+\omega(z)}$, where ω satisfies $\omega(0) = 0$, $|\omega(z)| < 1$ for |z| < 1. Therefore $f^2(z) = (zf'(z))^2 - f^2(z)\omega(z)$ and using this we can obtain

$$2\pi \sum_{k=1}^{\infty} |a_k|^2 r^{2k} = \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$

$$\geq \int_0^{2\pi} |\omega(re^{i\theta})| |f^2(re^{i\theta})| d\theta$$

$$= \int_0^{2\pi} |(re^{i\theta}f'(re^{i\theta}))^2 - f^2(re^{i\theta})| d\theta$$

$$\geq \int_0^{2\pi} |re^{i\theta}f'(re^{i\theta})|^2 - |f(re^{i\theta})|^2 d\theta$$

$$= 2\pi \sum_{k=1}^{\infty} k^2 |a_k|^2 r^{2k} - 2\pi \sum_{k=1}^{\infty} |a_k|^2 r^{2k}$$

for 0 < r < 1. The extremes in this sequence of inequalities give

$$2\sum_{k=1}^{\infty} |a_k|^2 r^{2k} \ge \sum_{k=1}^{\infty} k^2 |a_k|^2 r^{2k}, \quad 0 < r < 1.$$

Eventually, if we let $r \to 1^-$ then we obtain (4).

Corollary 1. If the function $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ belongs to the class SL^* , then $|a_k| \leq \sqrt{\frac{1}{k^2 - 2}}$ for $k \geq 2$.

Janusz Sokół

Theorem 2. If the function $f(z) = \sum_{k=1}^{\infty} a_k z^k$ belongs to the class SL^* , then

(5)
$$|a_2| \le 1/2, |a_3| \le 1/4, |a_4| \le 1/6.$$

Those estimations are sharp.

Proof. If $f(z) = \sum_{k=1}^{\infty} a_k z^k$ belongs to the class \mathcal{SL}^* then $[zf'(z)]^2 = f^2(z)[\omega(z) - 1]$, where ω satisfies $\omega(0) = 0$, $|\omega(z)| < 1$ for |z| < 1. Let us denote

(6)
$$[zf'(z)]^2 = \sum_{k=2}^{\infty} A_k z^k, \quad f^2(z) = \sum_{k=2}^{\infty} B_k z^k, \quad \omega(z) = \sum_{k=1}^{\infty} C_k z^k.$$

Then we have

(7)
$$A_k = \sum_{l=1}^{k-1} l(k-l)a_l a_{k-l} , \quad B_k = \sum_{l=1}^{k-1} a_l a_{k-l}$$

and

(8)
$$\sum_{k=2}^{\infty} (A_k - B_k) z^k = \left[\sum_{k=1}^{\infty} C_k z^k\right] \left[\sum_{k=2}^{\infty} B_k z^k\right].$$

Thus

(9) $A_2 = a_1 = 1$, $A_3 = 4a_1a_2 = 4a_2$, $A_4 = 6a_3 + 4a_2^2$, $A_5 = 8a_1a_4 + 12a_2a_3$ and

(10)
$$B_2 = a_1 = 1, \quad B_3 = 2a_2, \quad B_4 = 2a_3 + a_2^2, \quad B_5 = 2a_1a_4 + 2a_2a_3.$$

Equating the second, third and fourth coefficients of both sides of (8) we obtain

(i) $A_3 - B_3 = C_1 B_2$,

(ii)
$$A_4 - B_4 = C_1 B_3 + C_2 B_2$$
,

(iii)
$$A_5 - B_5 = C_1 B_4 + C_2 B_3 + C_3 B_2$$
.

So by (9), (10) we have

(j)
$$a_2 = \frac{1}{2}C_1$$
,
(jj) $a_3 = \frac{1}{16}C_1^2 + \frac{1}{4}C_2$,
(jjj) $a_4 = \frac{1}{96}C_1^3 + \frac{1}{24}C_1C_2 + \frac{1}{6}C_3$.

352

It is well known that $|C_k| \leq 1$, $\sum_{k=1}^{\infty} |C_k|^2 \leq 1$ therefore we obtain (5). For the proof of sharpness let us consider $q(z) = \sqrt{1+z^n}$. Using the representation formula (2) we obtain the function $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ such that $[zf'(z)]^2 = f^2(z)[z^n - 1]$ and with the notation (6) we have

$$\sum_{k=2}^{\infty} (A_k - B_k) z^k = \sum_{k=2}^{\infty} B_k z^{k+n}.$$

So $A_k = B_k$ for $k \le n+1$. This gives $a_1 = 1, a_2 = \cdots = a_n = 0$. While $A_{n+2} - B_{n+2} = B_2$ gives

$$\sum_{l=1}^{n+1} [l(n+2-l) - 1]a_l a_{n+2-l} = 1$$

thus $2na_{n+1} = 1$. Therefore there exists a function f in the class $S\mathcal{L}^*$ such that $f(z) = z + \frac{1}{2n}z^{n+1} + \cdots$.

Conjecture. Let $f \in S\mathcal{L}^*$ and $f(z) = \sum_{k=1}^{\infty} a_k z^k$. Then $|a_{n+1}| \leq \frac{1}{2n}$.

References

- D. A. Brannan, W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc., 1(2)(1969) 431-443.
- [2] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput Appl. Math., 105(1999) 327-336.
- [3] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993) 189-196.
- [4] J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Res., 19(1996) 101-105.
- [5] J. Stankiewicz, Quelques problèmes extrèmaux dans les classes des fonctions α angulairement ètoilèes, Ann. Univ. Mariae Curie–Skłodowska, Sect. A, 20(1966) 59-75.