Coefficient Estimates in a Class of Strongly Starlike Functions

Janusz Sokó́
Department of Mathematics Rzeszów University of Technology ul. W. Pola 2, 35959 Rzeszów, Poland
e-mail: jsokol@prz.edu.pl
Abstract. In this paper we consider some coefficient estimates in the subclass $\mathcal{S} \mathcal{L}^{*}$ of strongly starlike functions defined by a certain geometric condition.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the unit disc $\mathcal{U}=\{z:|z|<1\}$ on the complex plane \mathbb{C}. Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions normalized by $f(0)=0, f^{\prime}(0)=1$. Everywhere in this paper $z \in \mathcal{U}$ unless we make a note. We say that an analytic function f is subordinate to an analytic function g, and write $f(z) \prec g(z)$, if and only if there exists a function ω, analytic in \mathcal{U} such that $\omega(0)=0,|\omega(z)|<1$ for $|z|<1$ and $f(z)=g(\omega(z))$. In particular, if g is univalent in \mathcal{U}, we have the following equivalence

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathcal{U}) \subseteq g(\mathcal{U})
$$

Let us denote $Q(f, z)=\frac{z f^{\prime}(z)}{f(z)}$. The class $\mathcal{S S}^{*}(\beta)$ of strongly starlike functions of order β

$$
\mathcal{S S}^{*}(\beta):=\{f \in \mathcal{A}:|\operatorname{Arg} Q(f, z)|<\beta \pi / 2\}, \quad 0<\beta \leq 1
$$

was introduced in [5] and [1]. For $\beta=1$ this class becomes the well known class S^{*} of starlike functions. In this paper we consider the class $\mathcal{S} \mathcal{L}^{*}$:

$$
\begin{equation*}
\mathcal{S} \mathcal{L}^{*}:=\left\{f \in \mathcal{A}:\left|Q^{2}(f, z)-1\right|<1\right\} . \tag{1}
\end{equation*}
$$

It is easy to see that $f \in \mathcal{S} \mathcal{L}^{*}$ if and only if $Q(f, z) \prec q_{0}(z)=\sqrt{1+z}, q_{0}(0)=1$. We observe that $\mathcal{L}:=\left\{w \in \mathbb{C}: \operatorname{Re} w>0,\left|w^{2}-1\right|<1\right\}$ is the interior of the right half of the lemniscate of Bernoulli $\gamma_{1}:\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)=0$, see Figure 1. Moreover $\mathcal{L} \subset\{w:|\operatorname{Arg} w|<\pi / 4\}$, thus $\mathcal{S L}^{*} \subset \mathcal{S S}^{*}(1 / 2) \subset \mathcal{S}^{*}$. The class $\mathcal{S L}^{*}$ was introduced in [4] and there the authors give also the following representation formula.

[^0]

Theorem $\mathbf{A}([4])$. The function f belongs to the class $\mathcal{S L}^{*}$ if and only if there exists an analytic function $q \in \mathcal{H}, q(0)=0, q(z) \prec q_{0}(z)=\sqrt{1+z}, q_{0}(0)=1$ such that

$$
\begin{equation*}
f(z)=z \exp \int_{0}^{z} \frac{q(t)-1}{t} d t \tag{2}
\end{equation*}
$$

Let $q_{1}(z)=\frac{3+2 z}{3+z}, q_{2}(z)=\frac{5+3 z}{5+z}, q_{3}(z)=\frac{8+4 z}{8+z}$. Because $q_{i}(z) \prec q_{0}(z)$, $i=1,2,3$, then by (2) we obtain that the functions $f_{1}(z)=z+\frac{z^{2}}{3}, f_{2}(z)=z\left(1+\frac{z}{5}\right)^{2}$, $f_{3}(z)=z\left(1+\frac{z}{8}\right)^{3}$ are in $\mathcal{S} \mathcal{L}^{*}$. If we take $q_{0}(z)=\sqrt{1+z}, q_{0}(0)=1$ then we obtain from (2) the function f_{0}

$$
\begin{equation*}
f_{0}(z):=\frac{4 z \exp (2 \sqrt{1+z}-2)}{(1+\sqrt{1+z})^{2}}=z+\frac{1}{2} z^{2}+\frac{1}{16} z^{3}+\frac{1}{96} z^{4}-\frac{1}{128} z^{5}+\cdots \tag{3}
\end{equation*}
$$

Rønning considered in [3] an analogously defined class connected with a parabolic region:

$$
\mathcal{S}_{p}^{*}:=\{f \in \mathcal{A}: \operatorname{Re}[Q(f, z)]>|Q(f, z)-1|\}
$$

Kanas and Wiśniowska introduced in [2] the concept of a k-starlike functions

$$
k-\mathcal{S T}:=\{f \in \mathcal{A}: \operatorname{Re}[Q(f, z)]>k|Q(f, z)-1|\}, \quad k \geq 0
$$

In this way they obtained a continuous passage from starlike functions $(k=0)$ to the class $\mathcal{S}_{p}^{*}(k=1)$. Moreover for $0<k<1$ the quantity $Q(f, z)$ takes its values
in a convex domain on the right of a hyperbola while for $k>1$ inside an ellipse. Let us consider the conic region $P(k)=\{w \in \mathbb{C}: \operatorname{Re} w>k|w-1|\}$ connected with the class $k-\mathcal{S T}$ described above. For $k>1$ the curve $\partial P(k)$ is the ellipse $\gamma_{2}: x^{2}=k^{2}(x-1)^{2}+k^{2} y^{2}$. For $k \geq 2+\sqrt{2}$ this ellipse lies entirely inside $\overline{\mathcal{L}}$. Therefore $k-\mathcal{S T} \subset \mathcal{S} \mathcal{L}^{*}$, for $k \geq 2+\sqrt{2}$.

2. Main results

Theorem 1. If the function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ belongs to the class $\mathcal{S L}^{*}$, then

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(k^{2}-2\right)\left|a_{k}\right|^{2} \leq 1 \tag{4}
\end{equation*}
$$

Proof. If $f \in \mathcal{S} \mathcal{L}^{*}$, then $Q(f, z) \prec q_{0}(z)=\sqrt{1+z}$. Hence $Q(f, z)=\sqrt{1+\omega(z)}$, where ω satisfies $\omega(0)=0,|\omega(z)|<1$ for $|z|<1$. Therefore $f^{2}(z)=\left(z f^{\prime}(z)\right)^{2}-$ $f^{2}(z) \omega(z)$ and using this we can obtain

$$
\begin{aligned}
2 \pi \sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{2 k} & =\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \\
& \geq \int_{0}^{2 \pi}\left|\omega\left(r e^{i \theta}\right)\right|\left|f^{2}\left(r e^{i \theta}\right)\right| d \theta \\
& =\int_{0}^{2 \pi}\left|\left(r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)\right)^{2}-f^{2}\left(r e^{i \theta}\right)\right| d \theta \\
& \geq \int_{0}^{2 \pi}\left|r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)\right|^{2}-\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \\
& =2 \pi \sum_{k=1}^{\infty} k^{2}\left|a_{k}\right|^{2} r^{2 k}-2 \pi \sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{2 k}
\end{aligned}
$$

for $0<r<1$. The extremes in this sequence of inequalities give

$$
2 \sum_{k=1}^{\infty}\left|a_{k}\right|^{2} r^{2 k} \geq \sum_{k=1}^{\infty} k^{2}\left|a_{k}\right|^{2} r^{2 k}, \quad 0<r<1
$$

Eventually, if we let $r \rightarrow 1^{-}$then we obtain (4).
Corollary 1. If the function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ belongs to the class $\mathcal{S L}^{*}$, then $\left|a_{k}\right| \leq \sqrt{\frac{1}{k^{2}-2}}$ for $k \geq 2$.

Theorem 2. If the function $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ belongs to the class $\mathcal{S} \mathcal{L}^{*}$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq 1 / 2, \quad\left|a_{3}\right| \leq 1 / 4, \quad\left|a_{4}\right| \leq 1 / 6 \tag{5}
\end{equation*}
$$

Those estimations are sharp.
Proof. If $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ belongs to the class $\mathcal{S} \mathcal{L}^{*}$ then $\left[z f^{\prime}(z)\right]^{2}=f^{2}(z)[\omega(z)-$ 1], where ω satisfies $\omega(0)=0,|\omega(z)|<1$ for $|z|<1$. Let us denote

$$
\begin{equation*}
\left[z f^{\prime}(z)\right]^{2}=\sum_{k=2}^{\infty} A_{k} z^{k}, \quad f^{2}(z)=\sum_{k=2}^{\infty} B_{k} z^{k}, \quad \omega(z)=\sum_{k=1}^{\infty} C_{k} z^{k} . \tag{6}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
A_{k}=\sum_{l=1}^{k-1} l(k-l) a_{l} a_{k-l}, \quad B_{k}=\sum_{l=1}^{k-1} a_{l} a_{k-l} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(A_{k}-B_{k}\right) z^{k}=\left[\sum_{k=1}^{\infty} C_{k} z^{k}\right]\left[\sum_{k=2}^{\infty} B_{k} z^{k}\right] . \tag{8}
\end{equation*}
$$

Thus
(9) $\quad A_{2}=a_{1}=1, \quad A_{3}=4 a_{1} a_{2}=4 a_{2}, \quad A_{4}=6 a_{3}+4 a_{2}^{2}, \quad A_{5}=8 a_{1} a_{4}+12 a_{2} a_{3}$
and

$$
\begin{equation*}
B_{2}=a_{1}=1, \quad B_{3}=2 a_{2}, \quad B_{4}=2 a_{3}+a_{2}^{2}, \quad B_{5}=2 a_{1} a_{4}+2 a_{2} a_{3} . \tag{10}
\end{equation*}
$$

Equating the second, third and fourth coefficients of both sides of (8) we obtain
(i) $A_{3}-B_{3}=C_{1} B_{2}$,
(ii) $A_{4}-B_{4}=C_{1} B_{3}+C_{2} B_{2}$,
(iii) $A_{5}-B_{5}=C_{1} B_{4}+C_{2} B_{3}+C_{3} B_{2}$.

So by (9), (10) we have
(j) $a_{2}=\frac{1}{2} C_{1}$,
(jj) $a_{3}=\frac{1}{16} C_{1}^{2}+\frac{1}{4} C_{2}$,
(jjj) $a_{4}=\frac{1}{96} C_{1}^{3}+\frac{1}{24} C_{1} C_{2}+\frac{1}{6} C_{3}$.

It is well known that $\left|C_{k}\right| \leq 1, \sum_{k=1}^{\infty}\left|C_{k}\right|^{2} \leq 1$ therefore we obtain (5).
For the proof of sharpness let us consider $q(z)=\sqrt{1+z^{n}}$. Using the representation formula (2) we obtain the function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ such that $\left[z f^{\prime}(z)\right]^{2}=$ $f^{2}(z)\left[z^{n}-1\right]$ and with the notation (6) we have

$$
\sum_{k=2}^{\infty}\left(A_{k}-B_{k}\right) z^{k}=\sum_{k=2}^{\infty} B_{k} z^{k+n}
$$

So $A_{k}=B_{k}$ for $k \leq n+1$. This gives $a_{1}=1, a_{2}=\cdots=a_{n}=0$. While $A_{n+2}-B_{n+2}=B_{2}$ gives

$$
\sum_{l=1}^{n+1}[l(n+2-l)-1] a_{l} a_{n+2-l}=1
$$

thus $2 n a_{n+1}=1$. Therefore there exists a function f in the class $\mathcal{S L}^{*}$ such that $f(z)=z+\frac{1}{2 n} z^{n+1}+\cdots$.
Conjecture. Let $f \in \mathcal{S} \mathcal{L}^{*}$ and $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$. Then $\left|a_{n+1}\right| \leq \frac{1}{2 n}$.

References

[1] D. A. Brannan, W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc., 1(2)(1969) 431-443.
[2] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput Appl. Math., 105(1999) 327-336.
[3] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993) 189-196.
[4] J. Sokól, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Res., 19 (1996) 101-105.
[5] J. Stankiewicz, Quelques problèmes extrèmaux dans les classes des fonctions α angulairement ètoilèes, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 20(1966) 5975.

[^0]: Received July 14, 2008; accepted September 12, 2008.
 2000 Mathematics Subject Classification: 30C50, 30C45.
 Key words and phrases: analytic functions; starlike functions; k-starlike functions; strongly starlike functions.

