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Abstract. In the present paper, a theorem dealing with local property of | N̄ , pn, θn |k
summability of factored Fourier series which generalizes a result of Mazhar [8], has been

proved. Some new results have also been obtained.

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). We denote by tn
the n-th (C,1) mean of the sequence (nan). A series

∑
an is said to be summable

| C, 1 |k, k ≥ 1 , if (see [6])

(1)
∞∑

n=1

1
n
| tn |k< ∞.

Let (pn) be a sequence of positive numbers such that

(2) Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

(3) σn =
1

Pn

n∑
v=0

pvsv

defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of the
sequence (sn), generated by the sequence of coefficients (pn) (see [7]). The series∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [2])

(4)
∞∑

n=1

(Pn/pn)k−1 | ∆σn−1 |k< ∞,

where

(5) ∆σn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1.

Received May 29, 2008; accepted September 3, 2008.
2000 Mathematics Subject Classification: 40G99, 42A24, 42B24.
Key words and phrases: absolute summability, infinite series, local property, Fourier

series.

313
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In the special case pn = 1 for all values of n, | N̄ , pn |k summability is the same as
| C, 1 |k summability. Also, if we take k = 1 and pn = 1/(n + 1), then summability
| N̄ , pn |k is equivalent to the summability | R, log n, 1 |. Let (θn) be any sequence
of positive constants. The series

∑
an is said to be summable | N̄ , pn, θn |k, k ≥ 1,

if (see [12])

∞∑
n=1

θk−1
n | ∆σn−1 |k< ∞.(6)

If we take θn =
Pn

pn
, then | N̄ , pn, θn |k summability reduces to | N̄ , pn |k summa-

bility. Also, if we take θn = n and pn = 1 for all values of n, then we get | C, 1 |k
summability.
Furthermore, if we take θn = n, then | N̄ , pn, θn |k summability reduces to | R, pn |k
(see [4]) summability. A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every
positive integer n, where ∆2λn = ∆(∆λn) and ∆λn = λn − λn+1.
Let f(t) be a periodic function with period 2π and integrable (L) over (−π, π).
Without any loss of generality we may assume that the constant term in the Fourier
series of f(t) is zero, so that ∫ π

−π

f(t)dt = 0(7)

and

f(t) ∼
∞∑

n=1

(an cos nt + bn sinnt) =
∞∑

n=1

An(t).(8)

It is well known (see [13]) that the convergence of the Fourier series at t = x is a
local property of the generating function f(t) (i.e., it depends only on the behaviour
of f in a arbitrarily small neighbourhood of x), and hence the summability of the
Fourier series at t = x by any regular linear summability method is also a local
property of the generating function f(t).

2. Known result

Mohanty [11] has demonstrated that the summability | R, log n, 1 | of∑
An(t)/ log(n + 1),(9)

at t = x, is a local property of the generating function of
∑

An(t). Later on Mat-
sumoto [9] improved this result by replacing the series (9) by∑

An(t)/ log log(n + 1)1+ε, ε > 0.(10)

Generalizing the above result Bhatt [1] proved the following theorem.
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Theorem A. If (λn) is a convex sequence such that
∑

n−1λn is convergent, then
the summability | R, log n, 1 | of the series

∑
An(t)λn log n at a point can be ensured

by a local property.

Mishra [10] has also proved the following most general theorem dealing with
local property.

Theorem B. If (pn) is a sequence such that

Pn = O(npn),(11)
Pn∆pn = O(pnpn+1),(12)

then the summability | N̄ , pn | of the series

∞∑
n=1

An(t)λnPn/npn(13)

at a point can be ensured by local property, where (λn) is as in Theorem A.

On the other hand, Bor [3] has extended Theorem B and he proved that under
the conditions of Theorem B the result also holds for the summability | N̄ , pn |k,
k ≥ 1. Later on, he [5] has further generalized his result in the following way :

Theorem C. Let k ≥ 1, (pn) and (λn) be a sequences such that

∆Xn = O(1/n), Xn =
Pn

npn
,(14)

∞∑
n=1

Xk−1
n

| λn |k + | λn+1 |k

n
< ∞,(15)

∞∑
n=1

(Xk
n + 1) | ∆λn |< ∞.(16)

Then the summability | N̄ , pn |k of the series
∑

An(t)λnXn at a point can be ensured
by local property.

Mazhar [8] has generated Theorem C in the following form.

Theorem D. Let k ≥ 1, (pn) and (λn) be sequences such that

∆(Pn−1Xn) = O

(
Pn

n

)
, Xn =

Pn

npn
,(17)

∞∑
n=1

Xk−1
n

| λn |k

n
< ∞,(18)

∞∑
n=1

Xn+1 | ∆λn |< ∞.(19)
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Then the summability | N̄ , pn |k of the series
∑

An(t)λnXn at point can be ensured
by a local property.

3. The main result

The aim of this paper is to generalize Theorem D for | N̄ , pn, θn |k summability.
That is, we shall prove the following theorem.

Theorem. Let k ≥ 1, (pn) and (λn) be sequences such that conditions (17), (19)

are satisfied. If
(

θnpn

Pn

)
is a non-decreasing sequence and

∞∑
n=1

θk−1
n

(
pn

Pn

)k

| λn |k Xk
n < ∞,(20)

then the summability | N̄ , pn, θn |k of the series
∑

An(t)λnXn at a point can be
ensured by a local property.

It should be noted that if we take θn =
Pn

pn
, then we get Theorem D. In this

case condition (20) reduces to condition (18). In fact

∞∑
n=1

θk−1
n

(
pn

Pn

)k

| λn |k Xk
n =

∞∑
n=1

(
Pn

pn

)k
pn

Pn

(
pn

Pn

)k

| λn |k Xk
n

=
∞∑

n=1

Xk
n

pn

Pn
| λn |k

=
∞∑

n=1

Xk
n

1
nXn

| λn |k

=
∞∑

n=1

Xk−1
n

| λn |k

n
< ∞.

Proof of theorem. Since the behaviour of the Fourier series, as far as convergence is
concerned, for a particular value of x depends on the behaviour of the function in
the immediate neighbourhood of this point only and hence to complete the proof of
the theorem it is sufficent to prove that if (sn) is bounded, then under the conditions
of our theorem

∑
anλnXn is summable | N̄ , pn, θn |k, k ≥ 1.

Let (Tn) denotes the (N̄ , pn) mean of the series
∑

anλnXn. Then, by definition,
we have

Tn =
1

Pn

n∑
v=0

pv

v∑
r=0

arλrXr =
1

Pn

n∑
v=0

(Pn − Pv−1)avλvXv.
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Then, we have

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1avλvXv, n ≥ 1, (P−1 = 0).

Now using Abel’s transformation, we have

Tn − Tn−1

=
pn

PnPn−1

n−1∑
v=1

svλv∆(Pv−1Xv) +
pnsnλnXn

Pn

=
pn

PnPn−1

n−1∑
v=1

svλv∆(Pv−1Xv) +
pn

PnPn−1

n−1∑
v=1

svPvXv+1∆λv +
pnsnλnXn

Pn

= Tn,1 + Tn,2 + Tn,3, say.

To complete the proof of the Theorem, by Minkowski’s inequality for k > 1, it is
sufficient to show that

∞∑
n=1

θk−1
n | Tn,r |k< ∞, for r = 1, 2, 3.(21)

Now applying Hölder’s inequality, we have that

m+1∑
n=2

θk−1
n | Tn,1 |k

≤
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
P k

n−1

∣∣∣∣∣
n−1∑
v=1

svλv∆(Pv−1Xv)

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
P k

n−1

{
n−1∑
v=1

| λv | Pv

v

}k

= O(1)
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
P k

n−1

{
n−1∑
v=1

| λv | Xvpv

}k

= O(1)
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
Pn−1

n−1∑
v=1

pv | λv |k Xk
v ×

{
1

Pn−1

n−1∑
v=1

pv

}k−1

=
m∑

v=1

pv | λv |k Xk
v

m+1∑
n=v+1

(
θnpn

Pn

)k−1
pn

PnPn−1

= O(1)
m∑

v=1

pv | λv |k Xk
v

(
θvpv

Pv

)k−1 m+1∑
n=v+1

pn

PnPn−1
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= O(1)
m∑

v=1

pv | λv |k Xk
v θk−1

v

(
pv

Pv

)k−1 1
Pv

= O(1)
m∑

v=1

θk−1
v

(
pv

Pv

)k

| λv |k Xk
v = O(1) as m →∞,

by virtue of the hypotheses of the Theorem. Again

m+1∑
n=2

θk−1
n | Tn,2 |k

≤
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
P k

n−1

{
n−1∑
v=1

| sv | PvXv+1 | ∆λv |

}k

×

{
n−1∑
v=1

Xv+1 | ∆λv |

}k−1

= O(1)
n−1∑
v=1

P k
v Xv+1 | ∆λv |

m+1∑
n=v+1

(
θnpn

Pn

)k
pn

PnP k
n−1

= O(1)
m∑

v=1

P k
v Xv+1 | ∆λv |

(
θvpv

Pv

)k−1 1
P k−1

v

m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

P k
v Xv+1 | ∆λv |

(
θvpv

Pv

)k−1 1
P k−1

v

1
Pv

= O(1)
(

θ1p1

P1

)k−1 m∑
v=1

Xv+1 | ∆λv |

= O(1)
m∑

v=1

Xv+1 | ∆λv |= O(1) as m →∞,

in view of the hypotheses of the Theorem.
Finally, we have that

m∑
n=1

θk−1
n | Tn,3 |k =

m∑
n=1

θk−1
n

∣∣∣∣pnsnλnXn

Pn

∣∣∣∣k
= O(1)

m∑
n=1

θk−1
n

(
pn

Pn

)k

| λn |k Xk
n = O(1) as m →∞,

by virtue of the hypotheses of the Theorem. Therefore we get that

m∑
n=1

θk−1
n | Tn,r |k= O(1) as m →∞, for r = 1, 2, 3.

which completes the proof of the Theorem. If we take θn = n and pn = 1 for all
values of n, then we get a new result for | C, 1 |k summability. Also, if we take
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θn = n, then we have another new result for | R, pn |k summablity. �
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