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Abstract. In the present paper we investigate the existence of almost periodic processes

of ecological systems which are presented with nonautonomous N-dimensional impulsive

Lotka Volterra competitive systems with dispersions and fixed moments of impulsive per-

turbations. By using the techniques of piecewise continuous Lyapunov’s functions new

sufficient conditions for the global exponential stability of the unique almost periodic so-

lutions of these systems are given.

1. Introduction

Impulsive differential equations may be used for mathematical simulation of
processes and phenomena, which are subject to short-term perturbations during
their evolution. The duration of the perturbations is negligible in comparison with
the duration of the process considered, therefore it can be considered instanta-
neous. Most of the investigations related to impulsive systems are focused on the
basic theory of impulsive equations, [8], [11], [13] and seldom produce applications
on ecological systems. On the other hand nonautonomous N-dimensional Lotka
Volterra competitive systems with dispersions without impulses have attracted the
interest of many researchers in the past twenty years, [5]-[7], [12], [18], [21]. Some
qualitative characteristics of the solutions of such systems have been investigated by
many authors. Stability, periodicity, persistence, permanence are studied by Ahmad
and Lazer [1], [2], Ahmad and Stamova [3], Lisena [9], [10], Tineo [19]. There are
some perturbations in the real world such as fires and floods, that are not suitable
to be considered continually. Competitive system with such sudden perturbations
involving impulsive differential equations for mathematical simulations.

In this paper we shall investigate the existence of almost periodic solutions of
nonautonomous N-dimensional impulsive Lotka Volterra competitive system with
dispersions and fixed moments of impulsive perturbations. The main results related
to the study of the existence of almost periodic solutions for impulsive dynamical
systems are studied in [13], [14]-[17]. The purpose of this paper is to derive “easily
verifiable” sufficient conditions for the existence of almost periodic solutions for a
class of nonautonomous N-dimensional impulsive Lotka Volterra competitive sys-
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tem with dispersions and fixed moments of impulsive perturbations. The paper is
organized as follows. In Section 2 we give some preliminaries and main definitions.
In Section 3 we investigate the existence of almost periodic solutions. By means of
piecewise continuous auxiliary functions which are analogues of the classical Lya-
punov’s functions sufficient conditions are obtained.

2. Preliminaries and basic results

Let <N by the N -dimensional Euclidean space with norm ||u|| =
∑N

i=1 |ui|,
<+ = [0,∞), Sν = {u ∈ <N : ||u|| ≤ ν}, ν > 0, and let: B = {{τk} : τk ∈ <, τk <
τk+1, k ∈ Z} is the set of all sequences {τk} which are unbounded and strictly
increasing with distance ρ({τ (1)

k }, {τ (2)
k }). PC = PC[<,<N ] = {ϕ : < → <N , ϕ

is a piecewise continuous function with points of discontinuity of the first kind at
τk, {τk} ∈ B at which ϕ(τk − 0) and ϕ(τk + 0) exist, and ϕ(τk − 0) = ϕ(τk)}.
PC1[<,<] = {ϕ : < → <, ϕ is continuously differentiable everywhere with ex-
cept of the points τk, {τk} ∈ B at which ϕ̇(τk − 0) and ϕ̇(τk + 0) exist, and
ϕ̇(τk − 0) = ϕ̇(τk)}.

We will consider the following nonautonomous N-dimensional impulsive Lotka
Volterra competitive system with dispersion and fixed moments of impulsive per-
turbations

(1)



u̇i(t) = ui(t)
[
ri(t)− ai(t)ui(t)−

N∑
j=1,j 6=i

aij(t)uj(t)
]

+
N∑

j=1

bij(t)(uj(t)− ui(t)), t 6= τk,

ui(τk + 0) = ui(τk) + dkui(τk), k ∈ Z,

where t ∈ <, i = 1, 2, · · · , N, N ≥ 2 and:
(a) The functions ri(t), ai(t) ∈ C[<,<], 1 ≤ i ≤ N , and aij(t) ∈ C[<,<], i 6=
j, bij(t) ∈ C[<,<], 1 ≤ i, j ≤ N ;
(b) The constants dk ∈ <, {τk} ∈ B, k ∈ Z.

Let t0 ∈ <, ui0 ∈ <. Denote by u(t) = u(t; t0, u0), u(t) = col(u1(t), u2(t), · · · , uN (t)),
u0 = col(u10, u20, · · · , uN0) the solution of (1) with the initial condition

(2) u(t0 + 0; t0, u0) = u0.

The solution u(t) = u(t; t0, u0) of problem (1), (2) is a piecewise continuous function
with points of discontinuity of the first kind at the points τk, k ∈ Z. At these points
the solutions u(t) are continuous from the left, that is, at the moments of impulse
effects τ ′ks the following relations are valid:

ui(τk − 0) = ui(τk), ui(τk + 0) = ui(τk) + dkui(τk), k ∈ Z.

We will use piecewise continuous auxiliary functions which are analogues of the
classical Lyapunov’s functions and consider the following sets:
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Gk = (τk−1, τk)×<N , k ∈ Z; G = ∪∞k=−∞Gk;
V0 = {V ∈ C[G,<+], there exist the limits V (τk − 0, u0), V (τk + 0, u0), V (τk −
0, u0) = V (τk, u0), u0 ∈ Sν , V is locally Lipschitz continuous for u ∈ Sν}.

Let V ∈ V0. For any (t, u) ∈ [τk−1, τk) × Sν the right-hand derivative
D+V (t, u(t)) along the solution u(t; t0, u0) of (1) is defined by

D+V (t, u(t)) = lim
δ→0+

infδ−1{V (t + δ, u(t + δ))− V (t, u(t))}.

Given a nonnegative continuous function g(t) which is defined on <, we set

gM = sup
t∈<

g(t), gL = inf
t∈<

g(t).

Remark 1. The problems of existence, uniqueness, and continuability of the so-
lutions of impulsive differential equations have been investigated by many authors.
Sufficient conditions for the existence of the solutions of such systems are given in
[8], [13].

Since the solutions of (1) are piecewise continuous functions we adopt the fol-
lowing definitions for almost periodicity. Let for T, P ∈ B, s(T ∪ P ) : B → B is a
map such that the set s(T ∪ P ) forms a strictly increasing sequence and if D ⊂ <
then θε(D) = {t + ε, t ∈ D}, Fε(D) = ∩{θε(D), ε > 0}. By φ = (ϕ(t), T ) we
denote the element from the space PC×B, and for every sequence of real numbers
{αn}, n = 1, 2, · · · , with θαn

φ denote the sets {ϕ(t+αn), T −αn} ⊂ PC×B, where
T − αn = {τk − αn, k ∈ Z}, n = 1, 2, · · · .

Definition 1([13]). The set of sequences {τ j
k}, τ j

k = τk+j − τk, k ∈ Z, j ∈ Z is
said to be uniformly almost periodic with respect to k ∈ Z if for any ε > 0 there
exists a relatively dense set in < of ε-almost periods common for all the sequences
{τ j

k}.

Lemma 1([13]). The set of sequences {τ j
k} is uniformly almost periodic, if and

only if from each infinite sequences of shifts {τk−αn}, k ∈ Z, n = 1, 2, · · · , αn ∈ <
we can choose a subsequence, convergent in B.

Definition 2. The sequence {φn}, φn = (ϕn(t), Tn) ∈ PC ×B is uniformly con-
vergent to φ, φ = (ϕ(t), T ) ∈ PC × B if and only if for any ε > 0 there exists
n0 > 0 such that

ρ(T, Tn) < ε, ||ϕn(t)− ϕ(t)|| < ε

hold uniformly for n ≥ n0 and t ∈ < \ Fε(s(Tn ∪ T )).

Definition 3. The function ϕ ∈ PC is said to be almost periodic piecewise con-
tinuous function with points of discontinuity of the first kind from the set T if for
every sequence of real numbers {α′m} there exists a subsequence {αn} , αn = α′mn

such that θαnφ is compact in PC ×B.

Introduce the following assumptions:
H1. The functions ri(t), ai(t), 1 ≤ i ≤ N , aij(t), i 6= j, bij(t), 1 ≤ i, j ≤ N, are
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almost periodic, nonnegative, continuous and riL > 0, riM < ∞, aiL > 0, aiM <
∞, aijL ≥ 0, aijM < ∞, i 6= j, bijL ≥ 0, bijM < ∞ for 1 ≤ i, j ≤ N .
H2. The sequence {dk}, is almost periodic and −1 < dk ≤ 0, k ∈ Z.
H3. The set of sequences {τ j

k}, k ∈ Z, j ∈ Z is uniformly almost periodic and
inf{τk+1 − τk, k ∈ Z } > 0.

Let the assumptions H1-H3 hold and let {αm
′} be an arbitrary sequence of

real numbers. Then there exists a subsequence {αn}, αn = αmn
′ such that the

sequences {ri(t + αn)}, {ai(t + αn)} and {aij(t + αn)}, i 6= j, {bij(t + αn)} are
convergent uniformly on 1 ≤ i, j ≤ N , to the functions {rα

i (t)}, {aα
i (t)},

{aα
ij(t)}, {bα

ij(t)} and the sequences {τk−αn}, k ∈ Z are convergent to the sequence
{τα

k } uniformly with respect to k ∈ Z as n →∞. By {kni} we denote the sequence
of integers such that the subsequence {τkni

} is convergent to the sequence {τα
k }

uniformly with respect to k ∈ Z as i →∞.
From H2 it follows that there exists a subsequence of the sequence {kni

} such that
the sequences {dkni

} are convergent uniformly to the limits denoted by dα
k .

Then for every sequence {α′m} the system (1) is moving to the system

(3)



u̇i(t) = ui(t)[rα
i (t)− aα

i (t)ui(t)−
N∑

j=1,j 6=i

aα
ij(t)uj(t)]

+
N∑

j=1

bα
ij(t)(uj(t)− ui(t)), t 6= τα

k ,

ui(τα
k + 0) = ui(τα

k ) + dα
k ui(τα

k )), k ∈ Z.

Remark 2. In many papers the limiting systems (3) are called hull of the system
(1). These systems could be used effectively in the translation technique and in the
stability analysis of population models.

In the proof of the main results we shall use the following definitions and lemmas
for the system (1). Let u0 = col(u10, u20, · · · , uN0) and v0 = col(v10, v20, · · · , vN0), ui0 ∈
<, vi0 ∈ < and

u(t) = col(u1(t), u2(t), · · · , uN (t)), v(t) = col(v1(t), v2(t), · · · , vN (t))

are two solutions of (1) with initial conditions

u(t0 + 0; t0, u0) = u0, v(t0 + 0; t0, v0) = v0.

Definition 4([4]). The system (1) is said to be globally exponentially stable if for
all δ > 0, there exist γ = γ(δ) > 0 and c = c(δ) > 0 such that if u0, v0 ∈ Sν , with
||u0 − v0|| ≤ δ, then for all t ≥ t0,

||u(t; t0, u0)− v(t; t0, v0)|| < γ||u0 − v0|| exp[−c(t− t0)].
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Definition 5. Suppose u(t) = (u1(t), u2(t), · · · , un(t)) is any one solution of system
(1) then u(t) is said to be a strictly positive solution, if for 1 ≤ i ≤ N ,

0 < inf
t∈<

ui(t) ≤ sup
t∈<

ui(t) < ∞.

Lemma 2. Let the following conditions hold:
1. The conditions H1-H3 are satisfied.
2. There exist functions Pi, Qi ∈ PC1[<,<] such that

Pi(t0 + 0) ≤ ui(t0 + 0) ≤ Qi(t0 + 0),

where t0 ∈ <, i = 1, 2, · · · , N . Then we have

(4) Pi(t) ≤ ui(t) ≤ Qi(t)

for all t ≥ t0 and i = 1, 2, · · · , N .

Proof. First we will proof that

(5) ui(t) ≤ Qi(t)

for all t ≥ t0 and i = 1, 2, · · · , N , where Qi(t) is the maximal solution of the logistic
system

(6)

 q̇i(t) = qi(t) [ri(t)− ai(t)qi(t)] , t 6= τk,
qi(t0 + 0) = qi0 > 0,
qi(τk + 0) = qi(τk) + dMqi(τk), k ∈ Z,

where dM = sup
k∈Z

{dk}. The maximal solution Qi(t) = Qi(t; t0, q0), q0 =

col(q10, q20, · · · , qN0) of (6) is defined by the equality

Qi(t; t0, q0) =


Q0

i (t; t0, Q
0
i + 0), t0 < t ≤ τ1,

Q1
i (t; τ1, Q

1
i + 0), τ1 < t ≤ τ2,

· · ·
Qk

i (t; τk, Qk
i + 0), τk < t ≤ τk+1,

· · · ,

where Qk
i (t; τk, Qk

i + 0) is the solution of the equation without impulses

q̇i(t) = qi(t) [ri(t)− ai(t)qi(t)] ,

in the interval (τk, τk+1], k = 0, 1, 2, · · · , for which Qk
i + 0 = (1 + dM )Qk

i (τk; τk−1,
Qk−1

i + 0), k = 1, 2, · · · , 1 ≤ i ≤ N and Q0
i + 0 = qi0. By [20] , it follows for (1)

that

(7) u̇i(t) ≤ ui(t) [ri(t)− ai(t)ui(t))] , t 6= τk.
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Now, let t ∈ (t0, τ1]. If 0 < ui0 ≤ Qi(t0 + 0), then elementary differential inequality
[8] yields that

ui(t) ≤ Qi(t)

for all t ∈ (t0, τ1], i.e., the inequality (5) is valid for t ∈ (t0, τ1]. Suppose that (5)
is satisfied for t ∈ (τk−1, τk]. Then from H3 and the fact that (5) is satisfied for
t = τk we obtain

ui(τk + 0) = ui(τk) + dkui(τk) ≤ ui(τk) + dMui(τk)
≤ Qi(τk) + dMQi(τk) = Qi(τk + 0).

We apply again the comparison result (7) in the interval (τk, τk+1] and obtain

ui(t; t0, uo) ≤ Qk
i (t; τk, Qk

i + 0) = Qi(t; t0, q0)

i.e., the inequality (5) is valid for (τk, τk+1]. The proof of (5) is completed by
induction.

Further, by analogous arguments, using [20] we obtain from (1) and (7) that

u̇i(t) ≥ ui(t)
[
ri(t)− ai(t)ui(t))−

N∑
j=1, 6=i

aij(t) sup
t∈<

Qi(t)
]

−
N∑

j=1

bij(t) sup
t∈<

Qi(t), t 6= τk,

ui(τk + 0) ≥ ui(τk) + gLui(τk), k ∈ Z,

i = 1, · · · , N , N ≥ 2, and hence uio ≥ Pi(t0 + 0) implies that

(8) ui(t) ≥ Pi(t)

for all t ∈ < and i = 1, 2, · · · , N , where Pi(t) is the minimal solution of the logistic
system

(9)



ṗi(t) = pi(t)
[
ri(t)− ai(t)pi(t))−

N∑
j=1
j 6=i

aij(t) sup
t∈<

Qi(t)
]

−
N∑

j=1

bij(t) sup
t∈<

Qi(t), t 6= τk,

pi(t0 + 0) = pi0 > 0,
pi(τk + 0) = pi(τk) + dLpi(τk), k ∈ Z,

i = 1, · · · , N and dL = min
k∈Z

{dk} for 1 ≤ i ≤ N . Thus, the proof follows from and

(5) and (9). �

Lemma 3. Let the following conditions hold:
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1. The conditions H1-H3 are satisfied.
2. Let u(t) = col(u1(t), u2(t), · · · , uN (t)) is a solution of (1) such that ui(t0+0) > 0,
1 ≤ i ≤ N .
Then :
1. ui(t) > 0, 1 ≤ i ≤ N , t ∈ <.
2. For t ∈ < and 1 ≤ i ≤ N there exist a constants A > 0, B > 0, such that

A ≤ ui(t) ≤ B.

Proof of assertion 1. Under hypotheses H1-H3, consider the nonimulsive Lotka-
Volterra system

(10)



ẏi(t) = yi(t)

ri(t)−Ai(t)yi(t)−
N∑

j=1,j 6=i

Aij(t)yj(t)



+
N∑

j=1

Bij [yj(t)− yi(t)], t 6= τk, t > t0,

where

Ai(t) = ai(t)
∏

0<τk<t

(1 + dk),

Aij(t) = aij(t)
∏

0<τk<t

(1 + dk),

Bij(t) = bij(t)
∏

0<τk<t

(1 + dk).

If yi(t) is solution of (7) then ui = yi

∏
0<τk<t

(1 + dk) is solution of (1) 1 ≤ i ≤ N .

In fact, for t 6= τk it follows

(11) u̇i(t)− ui(t)

ri(t)− ai(t)ui(t)−
N∑

j=1,j 6=i

aij(t)uj(t)

− N∑
j=1

bij [uj(t)− ui(t)]

= ẏi

∏
0<τk<t

(1 + dk)− yi

∏
0<τk<t

(1 + dk)
[
ri(t)− ai(t)yi

∏
0<τk<t

(1 + dk)

−
N∑

j=1
j 6=i

aij(t)yj

∏
0<τk<t

(1 + dk)
]
−

N∑
j=1

bij [yj

∏
0<τk<t

(1 + dk)− yi

∏
0<τk<t

(1 + dk)]
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=
∏

0<τk<t

(1 + dk)
[
ẏi(t)− yi(t)

[
ri(t)−Ai(t)yi(t)−

N∑
j=1,j 6=i

Aij(t)yj(t)
]

−
N∑

j=1

Bij [yj(t)− yi(t)]
]
≡ 0.

For t = τk we have

ui(τk + 0) = lim
t→τ+

k

∏
0<τk<t

(1 + dk)yi(t) =
∏

0<τk<t

(1 + dk)yi(τk),

and
ui(τk) =

∏
0<τk<t

(1 + dk)yi(τk).

Thus, for every k ∈ Z

(12) ui(τk + 0) =
∏

0<τk<t

(1 + dk)yi(τk).

From (11) and (12) it follows that ui(t) is the solution of (1).
The proof that if ui = yi

∏
0<τk<t

(1 + dk) is solution of (1) it follows that yi(t), 1 ≤

i ≤ N is solution of (10) is analogously. From [20] it follows that for the system
without impulses (10) exists positive solution on t ∈ <. Then from (11) and (12) it
follows that ui(t) > 0, 1 ≤ i ≤ N, t ∈ <. �

Proof of assertion 2. From [20] under the conditions of Lemma 3 for the solutions
of (6) and (9) it is valid that

αi ≤ Pi(t), Qi(t) ≤ βi,

where αi > 0, o < βi < ∞ for all t 6= τk, 1 ≤ i ≤ N and then

αi ≤ ui(t) ≤ βi.

Also since the solution ui(t) is left continues at t = τk we have for t = τ1 that

αi ≤ ui(τ1) ≤ βi.

On the other hand

(1 + d1)ai ≤ ui(τ1 + 0) ≤ (1 + dk)βi ≤ βi.

By analogous arguments for the t ∈ (τk−1, τk] it follows

0 <
k∏

l=1

(1 + dl)αi ≤ ui(τk + 0) ≤ βi.
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Then for all t ∈ < we have
A ≤ ui(t) ≤ B,

where
A = min

i
{αi

∏
k∈Z

(1 + dk)}, B = min
i

βi.

The proof of Lemma 3 is complete. �

3. Main results

For the proof of the main results we consider systems (3) and then discuss the
almost periodic solutions of the system (1).

Lemma 4. Let the following conditions hold:
1. The conditions H1-H3 are satisfied.
2. {αm

′} be an arbitrary sequence of real numbers.
3. For the systems (3) there exist strictly positive solutions.
Then the system (1) has a unique strictly positive almost periodic solution.

Proof. For simplification, we write (1) in the form

(13)
{

u̇ = f(t, u), t 6= τk,
u(τk + 0) = u(τk) + dku(τk), k ∈ Z.

Let φ(t) be a strictly positive solution of (13) and let the sequences of real numbers
α′ and β′ are such that for their subsequences α ⊂ α′, β ⊂ β′, we have θα+βf(t, u) =
θαθβf(t, u). Then θα+βφ(t), θαθβφ(t) exist uniformly on the compact set < × B
and are solutions of the following equation{

u̇ = fα+β(t, u), t 6= τα+β
k ,

u(τk + 0) = u(τk) + dα+β
k u(τk), k ∈ Z.

Therefore, θα+βφ(t) = θαθβφ(t), and thus according to Lemma 2, [16], it follows
that φ(t) is an almost periodic solution of system (13). The proof is complete. �

Theorem 1. Let the following conditions hold:
1. The conditions H1-H3 are satisfied.
2. There exist nonnegative almost periodic functions δl(t), 1 ≤ l ≤ N such that

(14) al(t)−
N∑

i=1,i 6=l

ail(t)−
1
A

N∑
i=1

bil(t) ≥ δl(t), t 6= τk,

for t ∈ <, A > 0, k ∈ Z. Then:
1. For the system (1) there exists a unique strictly positive almost periodic solution.
2. If there exists a constant c ≥ 0 such that∫ t

t0

δ(t)ds = c(t− t0),
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where δ(t) = min(δ1(t), δ2(t), · · · , δN (t)), then the almost periodic solution is glob-
ally exponentially stable.

Proof. From construction of the system (3) it follows that there exists a time se-
quence {σn}, σn < σn+1 and σn →∞ for n →∞ such that

ri(t + σn) → rσ
i (t), ai(t + σn) → aσ

i (t), aij(t + σn) → aσ
ij(t),

bσ
ij(t + σn) → bσ

ij(t), n →∞

uniformly on t ∈ <, t 6= τk, and there exists a subsequence {kn} of {n} kn →
∞, n →∞ such that

τkn
→ τσ

k , dkn
→ dσ

k .

Let u(t) is positive solution of the system (3). From Lemma 3 it follows that there
exist two positive constants A and B, such that

A ≤ lim
t→∞

inf ui(t) ≤ lim
t→∞

supui(t) ≤ B, i = 1, 2, · · · , N

and consequently

(15) 0 < inf
t∈<

ui(t) ≤ sup
t∈<

ui(t) < ∞, i = 1, 2, · · · , N.

Let un(t) = u(t + σn) and for all t ≥ −σn, n = 1, 2, · · · , we obtain

(16)



u̇i(t) = ui(t)[rσ
i (t + σn)− aσ

i (t + σn)ui(t)−
N∑

j=1,j 6=i

aσ
ij(t + σn)uj(t)]

+
N∑

j=1

bσ
ij(t + σn)(uj(t)− ui(t)), t 6= τkn − σn,

∆ui(τkn
) = dσ

kn
ui(τkn

), kn ∈ Z.

From H1-H3 and (14) it follows that there exists a positive constant K such

that |dun(t)
dt

| ≤ K for n = 1, 2, · · · and for any whole nomber r > 0 sequence

{un(t)}, n ≤ r is uniformly bounded and contionuous for t ∈ [−σn,∞) \ {τkn
}.

Then from Ascoli-Arzela Theorem it follows that there exists subsequence {σnm
}

such that the sequence um(t) is convergent uniformly on any compact set in < for
m →∞.
Set

lim
m→∞

um(t) = uσ(t) = (uσ
1 (t), uσ

2 (t), · · · , uσ
n(t)).

Lemma 3 implies that

(17) 0 < inf
t∈[0,∞)

uσ
i (t) ≤ sup

t∈[0,∞)

uσ
i (t) < ∞, i = 1, 2, · · · , N.
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From (16) and H1-H3 it follows that uσ(t) is a solution of the system (3) and
consequently for every system in the form (3) there exists at least one strictly pos-
itive solution. Now suppose that the system (3) has two arbitrary strictly positive
solutions

uσ = (uσ
1 (t), uσ

2 (t), · · · , uσ
N (t)), vσ = (vσ

1 (t), vσ
2 (t), · · · , vσ

N (t)).

Consider the Lyapunov function

V σ(t, uσ(t), vσ(t)) =
N∑

i=1

|lnuσ
i (t)

vσ
i (t)

|, t ∈ <.

Then for t ∈ <, t 6= τσ
k we have that

D+V σ(t, uσ(t), vσ(t)) =
N∑

i=1

(
u̇σ

i (t)
uσ

i (t)
− v̇σ

i (t)
vσ

i (t)
)sgn(uσ

i (t)− vσ
i (t))

≤
N∑

i=1

{
− aσ

i (t)|uσ
i (t)− vσ

i (t)|+
N∑

j=1,j 6=i

aσ
ij(t)|uσ

j (t)− vσ
j (t)|

+
1
A

N∑
j=1

bσ
ij(t))|uσ

j (t)− vσ
j (t)|

}
.

Thus in view of hypothesis (14) we obtain

(18) D+V σ(t, uσ(t), vσ(t)) ≤ −δσ(t)mσ(t), t ∈ <, t 6= τσ
k ,

where δσ
i (t + σn) → δσ

i (t), n →∞, i = 1, 2, · · · , N,

δσ(t) = min(δσ
1 (t), δσ

2 (t), · · · , δσ
N (t)), mσ(t) =

n∑
i=1

|uσ
i − vσ

i |.

On the other hand for t = τσ
k we have

(19) V σ(τσ
k +0, uσ(τσ

k + 0), vσ(τσ
k + 0)) =

N∑
i=1

|lnuσ
i (τσ

k + 0)
vσ

i (τσ
k + 0)

|

=
N∑

i=1

|ln (1 + dσ
k)uσ

i (τσ
k )

(1 + dσ
k)vσ

i (τσ
k )
| = V σ(τσ

k , uσ(τσ
k ), vσ(τσ

k )).

From (18) and (19) it follows

D+V σ(t, uσ(t), vσ(t)) ≤ 0, t ∈ <, t 6= τσ
k ,

and
V σ(τσ

k + 0, uσ(τσ
k + 0), vσ(τσ

k + 0))− V σ(τσ
k , uσ(τσ

k ), vσ(τσ
k )) = 0,
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and hence
V σ(t, uσ(t), vσ(t)) ≤ V σ(t0, uσ(t0), vσ(t0))

for all t ≥ t0, t0 ∈ <. From the above inequality, (18) and (19) we get∫ t

t0

δσ(s)mσ(s)ds ≤ V σ(t0)− V σ(t), t ≥ t0.

Therefore, ∫ ∞

t0

|uσ
i (s)− vσ

i (s)|ds < ∞, i = 1, 2, · · · , N,

and uσ
i (t)− vσ

i (t) → 0 as t →∞. Let µσ = inf
t∈<

{uσ
i , vσ

i , i = 1, 2, · · · , N}. From the

definition of V σ(t) we have

V σ(t, uσ(t), vσ(t)) =
N∑

i=1

[lnuσ
i − lnvσ

i ]

≤ 1
µσ

N∑
i=1

|uσ
i − vσ

i |.

Hence V σ(t) → 0, t → ∞. We have that V σ(t) is nonincreasing nonnegative
function on < and from (19) we obtain that

(20) V σ(t) = 0, t ∈ <.

From (20) it follows that uσ
i ≡ vσ

i for all t ∈ < and i = 1, 2, · · · , N . Therefore for an
arbitrary sequence of real numbers {αm

′} the system (3) has a unique strictly pos-
itive solution. From Lemma 4 analogously it follows that system (1) has an unique
strictly positive almost periodic solution u(t). Now consider again the Lyapunov
function

V (t) = V (t, u(t), v(t)) =
N∑

i=1

|lnui(t)
vi(t)

|,

where v(t) = (v1(t), v2(t), · · · , vN (t)) is an arbitrary solution of (1) with initial
condition v(t0 + 0) = v0.
By Mean Value Theorem it follows that for any closed interval contained in t ∈
(τk−1, τk], k ∈ Z there exist positive numbers r and R such that for 1 ≤ i ≤ N ,
r ≤ ui(t), vi(t) ≤ R and

(21)
1
R
|ui(t)− vi(t)| ≤ |lnui(t)− lnvi(t)| ≤

1
r
|ui(t)− vi(t)|.

Hence we obtain

(22) V (t0 + 0, u0, v0) =
N∑

i=1

|lnui(t0)− lnvi(t0)| ≤
1
r
||u0 − v0||.
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On the other hand

(23) D+V (t, u(t), v(t)) ≤ −δ(t)m(t) ≤ −δ(t)rV (t, u(t), v(t)),

where t ∈ <, t 6= τk and

m(t) =
N∑

i=1

|ui − vi|, δ(t) = min(δ1(t), δ2(t), · · · , δN (t)).

For t ∈ <, t = τk

(24) V (τk + 0, u(τk + 0), v(τk + 0)) =
N∑

i=1

|lnui(τk + 0)
vi(τk + 0)

|

=
N∑

i=1

|ln (1 + dk)ui(τk)
(1 + dk)vi(τk)

| = V (τk, u(τk), v(τk)).

From (21), (22) and (23) it follows

(25) V (t, u(t), v(t)) ≤ V (t0 + 0, u0, v0) exp
{
−r

∫ t

t0

δ(s)ds

}
.

Therefore, from (21), (25) and (23) we deduce the inequality

N∑
i=1

|ui(t)− vi(t)| ≤
R

r
||u0 − v0||e−rc(t−t0),

t ≥ t0. This shows that the unique almost periodic solution u(t) of the system (1)
is globally exponentially stable. The proof of Theorem 1 is complete. �
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