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Abstract. This paper deals with very weak solutions of the A-harmonic equation

divA(x,5u) = 0 (∗)

with the operator A : Ω × Rn → Rn satisfies some coercivity and controllable growth

conditions with Muckenhoupt weight. By using the Hodge decomposition with weight, a

regularity property is proved: There exists an integrable exponent r1 = r1(λ, n, p) < p,

such that every very weak solution u ∈ W 1,r
loc (Ω, w) with r1 < r < p belongs to W 1,p

loc (Ω, w).

That is, u is a weak solution to (∗) in the usual sense.

1. Introduction and statement of result

Let w be a locally integrable, nonnegative function in Rn. Then a Radon
measure µ is canonically associated with the weight w,

(1.1) µ(E) =
∫

E

w(x)dx.

Thus dµ(x) = w(x)dx, where dx is the n-dimensional Lebesgue measure. In what
follows, the weight w and the measure µ are identified via (1.1). Let Ω be an open
subset of Rn, n ≥ 2. Consider the following second order divergence type elliptic
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equation (also called A-harmonic equation or Leray-Lions equation)

(1.2) divA(x,5u(x)) = 0,

where A : Ω×Rn → Rn is a Carathéodory function and satisfies
(i) |A(x, ξ)| ≤ λw(x)|ξ|p−1,
(ii) 〈A(x, ξ), ξ〉 ≥ λ−1w(x)|ξ|p,

where 1 < p < ∞, λ ≥ 1 are two fixed constants, and w(x) ∈ A1 be a Muckenhoupt
weight. The prototype of equation (1.2) is the p-harmonic equation with weight

div(w(x)| 5 u|p−2 5 u) = 0.

Definition 1.1. A function u ∈ W 1,r
loc (Ω, w), max{1, p− 1} ≤ r < p is called a very

weak solution of (1.2) if

(1.3)
∫

Ω

〈A(x,5u),5ϕ〉dx = 0

for all ϕ ∈ W 1,r/(r−p+1)(Ω, w) with compact support.

Recall that u ∈ W 1,p
loc (Ω, w) is a weak solution of (1.2) if (1.3) holds for all

ϕ ∈ W 1,p(Ω, w) with compact support. The word very weak in Definition 1.1 means
that the Sobolev integrable exponent r of u is smaller than the natural exponent p.
Regularity theory for very weak solutions of (1.2) with the operator A satisfies the
conditions (i) and (ii) with w(x) ≡ 1 has been considered by Iwaniec and Sbordone
[1] by using the theory of Hodge decomposition. J. L. Lewis [2] obtained a similar
result by using an alternative method. In this note, we consider the regularity
theory for very weak solutions of (1.1) with some general conditions (i) and (ii) and
obtain the following result.

Theorem. Suppose that w ∈ A1 be a doubling Muckenhoupt weight. There exists
r1 = r1(λ, n, p) < p, such that every very weak solution u ∈ W 1,r

loc (Ω, w) with r1 <

r < p belongs to W 1,p
loc (Ω, w). That is, u is a weak solution to (1.2) in the usual

sense.

2. Definitions and some preliminary lemmas

Definition 2.1.[3] Given a nonnegative locally integrable function w, we say that
w belongs to the Ap class of Muckenhoupt, 1 < p < ∞, if

(2.1) sup
Q

(
1
|Q|

∫
Q

wdx

) (
1
|Q|

∫
Q

w1/(1−p)dx

)p−1

= Ap(w) < ∞,

where the supremum is taken over all cubes Q of Rn. When p = 1, replace the
inequality (2.1) with

Mw(x) ≤ cw(x)
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for some fixed constant c and a.e. x ∈ Rn, where M is the Hardy-Littlewood
maximal operator.

It is well-known that A1 ⊂ Ap whenever p > 1, see [3]. We say that a weight w
is doubling, if there is a constant C > 0 such that

µ(2Q) ≤ Cµ(Q).

whenever Q ⊂ 2Q are concentric cubes in Rn, where 2Q is the cube with the same
center as Q and with side-length twice that of Q. Given a measurable subset E of
Rn, we will denote by Lp(E,w), 1 < p < ∞, the Banach space of all measurable
functions f defined on E for which

‖f‖Lp(E,w) =
(∫

E

|f(x)|pw(x)dx

)1/p

< ∞.

The weighted Sobolev class W 1,p(E,w) consists of all functions f for which f and
its first generalized derivatives belong to Lp(E,w). The symbols Lp

loc(Ω, w) and
W 1,p

loc (Ω, w) are self-explanatory.

Definition 2.2. A function K(x) : Rn → R is a Calderon-Zygmund kernel if it
satisfies the following properties:

‖K̂(x)‖∞ ≤ C,
|K(x)| ≤ C|x|−n,

|K(x)−K(x− y)| ≤ C |y|
|x|n+1 for |x| > 2|y|.

For f ∈ Lp(Rn), 1 < p < ∞, let

Tf(x) = p · v ·
∫

Rn

K(x− y)f(y)dy.

Let the above operator T be named the Calderon-Zygmund (CZ) singular integral
operator. It is well-known that the CZ singular integral operators are bounded on
weighted Lp spaces whose weights belong to the A1 class, see [4], [5].

Lemma 2.1. Let w be an A1 weight and T be a CZ singular integral operator.
Then there exists a constant C, such that for every f ∈ Lp(Rn, w),

‖Tf‖Lp(Rn,w) ≤ CAp(w)p′‖f‖Lp(Rn,w),

where p′ = p/(p− 1).

The following lemma comes from [5] which is a Hodge decomposition in weighted
spaces.

Lemma 2.2. Let Ω be a regular domain of Rn (By a regular domain we understand
any domain of finite measure for which the estimates in (2.3) and (2.4) are satisfied.
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For example, a Lipschitz domain is regular.) and w(x) be an A1 weight. If u ∈
W 1,p−ε

0 (Ω, w), 1 < p < ∞, −1 < ε < p−1, then there exist ϕ ∈ W
1,(p−ε)/(1−ε)
0 (Ω, w)

and a divergence-free vector field H ∈ L(p−ε)/(1−ε)(Ω, w) such that

(2) | 5 u|−ε 5 u = 5ϕ + H

and

(3) ‖ 5 ϕ‖L(p−ε)/(1−ε)(Ω,w) ≤ CAp(w)γ‖ 5 u‖1−ε
Lp−ε(Ω,w),

(4) ‖H‖L(p−ε)/(1−ε)(Ω,w) ≤ CAp(w)γ |ε|‖ 5 u‖1−ε
Lp−ε(Ω,w),

where γ depending on r.

We will also need the following lemma in the proof of the main theorem.

Lemma 2.3.[6] Suppose that w is a doubling weight and that nonnegative f ∈
Lτ

loc(Ω, w), 1 < τ < ∞, satisfies(
−
∫

Q

fτdµ

)1/τ

≤ C1 −
∫

2Q

fdµ

for each cube Q such that 2Q ⊂ Ω, where −
∫

Q
gdµ = 1

µ(Q)

∫
Q

gdµ is the integral mean
for g over Q, and the constant C1 ≥ 1 independent of the cube Q. Then there exist
q > τ so that (

−
∫

Q

fqdµ

)1/q

≤ C2

(
−
∫

2Q

fτdµ

)1/τ

,

where the constant C2 ≥ 1 is independent of the cube Q. In particular, f ∈
Lq

loc(Ω, w).

The following lemma comes from [7].

Lemma 2.4. Let Q = Q(R) be any cube with side-length R, τ > 1 and u ∈ C1(Q).
Then there exist constants C, δ∗ > 0, such that for all 1 ≤ K ≤ K∗ = n

n−1 + δ∗,

(5)
(

1
µ(Q)

∫
Q

|u− uQ|Kτdµ

)1/Kτ

≤ CR

(
1

µ(Q)

∫
Q

| 5 u|τdµ

)1/τ

,

where uQ = −
∫

Q
udµ.

Obviously, (2.5) can be extended to functions u ∈ W 1,Kτ (Q) by an approxima-
tion argument.

Lemma 2.5.[8] Let f(t) be a nonnegative bounded function defined for 0 ≤ T0 ≤
t ≤ T1. Suppose that for T0 ≤ t < s ≤ T1 we have

f(t) ≤ A(s− t)−α + B + θf(s),
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where A,B, α, θ are non-negative constants, and θ < 1. Then there exists a constant
c, depending only on α and θ such that for every %,R, T0 ≤ % < R ≤ R1 we have

f(%) ≤ c[A(R− %)−α + B].

3. Proof of the main theorem

Let w ∈ A1 be a doubling Muckenhoupt weight and u ∈ W 1,r
loc (Ω, w), max{1, p−

1} < r < p, be a very weak solution of (1.2). For an arbitrary cube 2Q ⊂⊂
Ω, take a cut-off function η ∈ C∞

0 (2Q), such that 0 ≤ η ≤ 1, η ≡ 1 in Q and
| 5 η| ≤ C(n)

R , where R is the side-length of Q. Consider the Hodge decomposition
of | 5 (η(u − C))|r−p 5 (η(u − C)) ∈ Lr/(r−p+1)(2Q,w), where C is a constant to
be determined later. We have by Lemma 2.2 that

(3.1) | 5 (η(u− C))|r−p 5 (η(u− C)) = 5ϕ + H,

where H is divergence-free and the following estimates hold

(3.2) ‖ 5 ϕ‖Lr/(r−p+1)(2Q,w) ≤ CAp(w)γ‖ 5 (η(u− C))‖r−p+1
Lr(2Q,w),

(3.3) ‖H‖Lr/(r−p+1)(2Q,w) ≤ CAp(w)γ |ε|‖ 5 (η(u− C))‖r−p+1
Lr(2Q,w).

If we set

E(η, u) = | 5 (η(u− C))|r−p 5 (η(u− C))− |η 5 u|r−pη 5 u,

then by an elementary inequality from [9],

||X|−εX − |Y |−εY | ≤ 2ε(1 + ε)
1− ε

|X − Y |1−ε, 0 ≤ ε < 1, X, Y ∈ Rn,

one can derive that

|E(η, u)| ≤ 2p−r(p− r + 1)
r − p + 1

|(u− C)5 η|r−p+1.

It follows from Definition 1.1 and (3.1) that∫
Ω

〈A(x,5u), | 5 (η(u− C))|r−p 5 (η(u− C))〉dx =
∫

Ω

〈A(x,5u),H〉dx.

This implies, by the definition of E(η, u), that

(3.4)

∫
Ω

〈A(x,5u), |η 5 u|r−pη 5 u〉dx

=
∫

Ω

〈A(x,5u),H〉dx−
∫

Ω

〈A(x,5u), E(η, u)〉dx

= I1 + I2.
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The left-hand side of the above inequality can be estimated by using the condition
(ii),

(3.5)
∫

Ω

〈A(x,5u), |η 5 u|r−pη 5 u〉dx ≥ λ−1

∫
Q

| 5 u|rdµ.

|I1| can be estimated by the condition (i), Hölder’s inequality, (3.3) and Young’s
inequality,

|I1| =
∣∣∣∣∫

Ω

〈A(x,5u),H〉
∣∣∣∣

≤ λ

∫
2Q

| 5 u|p−1|H|dµ ≤ λ‖ 5 u‖p−1
Lr(2Q,w)‖H‖Lr/(r−p+1)(2Q,w)

≤ CAp(w)γλ|p− r|‖ 5 u‖p−1
Lr(2Q,w)‖ 5 (η(u− C))‖r−p+1

Lr(2Q,w)

≤ CAp(w)γλ(p− r)
[
C(ε)‖ 5 u‖r

Lr(2Q,w) + ε‖ 5 (η(u− C))‖r
Lr(2Q,w)

]
.

Take C = u2Q. By Lemma 2.4 with K = n
n−1 and τ = r

K = (n−1)r
n , one obtain by

Young’s inequality that

(3.6)

‖ 5 (η(u− C))‖r
Lr(2Q,w) =

∫
2Q

| 5 (η(u− C))|rdµ

≤ 2r−1

∫
2Q

(|η 5 u|r + |(u− C)5 η|r) dµ

≤ 2r−1

∫
2Q

| 5 u|rdµ +
C2r−1

µ(2Q)1/(n−1)

(∫
2Q

| 5 u|(n−1)r/ndµ

)n/(n−1)

.

Thus

(3.7)

|I1| ≤ CAp(w)γλ(p− r)C(ε)
∫

2Q

| 5 u|rdµ

+CAp(w)γ2r−1λ(p− r)ε
∫

2Q

| 5 u|rdµ

+
CAp(w)γ2r−1λ(p− r)

µ(2Q)1/(n−1)

(∫
2Q

| 5 u|(n−1)r/ndµ

)n/(n−1)

.

Finally, we estimate |I2|. Take r sufficiently close to p such that 2p−r(p−r+1)
r−p+1 < 2.

Thus

|I2| =
∣∣∣∣∫

2Q

〈A(x,5u), E(η, u)〉
∣∣∣∣ ≤ 2λ

∫
2Q

| 5 u|p−1|(u− C)5 η|r−p+1dµ

≤ 2λ‖ 5 u‖p−1
Lr(2Q,w)‖(u− C)5 η‖r−p+1

Lr(2Q,w)

≤ λε‖ 5 u‖r
Lr(2Q,w) + C(ε)λ‖(u− C)5 η‖r

Lr(2Q,w).

By Lemma 2.4 again, one can derive that

‖(u− C)5 η‖r
Lr(2Q,w) ≤

C

µ(2Q)1/(n−1)

(∫
2Q

| 5 u|(n−1)r/ndµ

)n/(n−1)

.
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Thus

(3.8) |I2| ≤ λε‖ 5 u‖r
Lr(2Q,w) +

C(ε)λ
µ(2Q)1/(n−1)

(∫
2Q

| 5 u|(n−1)r/ndµ

)n/(n−1)

.

Adding all the estimates (3.4), (3.5), (3.7) and (3.8), we obtain∫
Q

| 5 u|rdµ ≤ CAp(w)γλ2(p− r)C(ε)
∫

2Q

| 5 u|rdµ

+CAp(w)γ2r−1λ2(p− r)ε
∫

2Q

| 5 u|rdµ

+
CAp(w)γ2r−1λ2(p− r)

µ(2Q)1/(n−1)

(∫
2Q

| 5 u|(n−1)r/ndµ

)n/(n−1)

+λ2ε

∫
2Q

| 5 u|rdµ +
C(ε)λ2

µ(2Q)1/(n−1)

(∫
2Q

| 5 u|(n−1)r/ndµ

)n/(n−1)

.

Take r sufficiently close to p and ε small enough, such that θ = CAp(w)γλ2(p −
r)C(ε) + CAp(w)γ2r−1λ2(p− r)ε + λ2ε < 1 (in fact, this inequality can decide the
value of r1), by Lemma 2.5, there exists a constant c, such that

∫
Q

| 5 u|rdµ ≤ Cc

µ(2Q)1/(n−1)

(∫
2Q

| 5 u|(n−1)r/ndµ

)n/(n−1)

.

Divided by µ(Q) in both sides of the above inequality yields

(3.9) −
∫

Q

| 5 u|rdµ ≤ C

(
−
∫

2Q

| 5 u|(n−1)r/ndµ

)n/(n−1)

.

We are now in a position of using Lemma 2.3 to improve the degree of integrability
of | 5 u|. Accordingly, there exists q > r, such that | 5 u| ∈ Lq

loc(Ω, w). For u
fixed, we denote by I the set of all exponents q ∈ [r, p] such that | 5 u| ∈ Lq

loc(Ω),
where r1 < r < p. By assumption, the set I contains r. We shall prove that I
coincides with the interval [r, p]. Obviously the set I is closed. Now inequality
(3.9) and Lemma 2.3 imply that | 5 u| actually belongs to Lp̃

loc(Ω, w) with some
exponent p̃ > r. In conclusion, the set I is closed and open and thus coincides with
the interval [r, p]. By Sobolev Imbedding theorem we have u ∈ W 1,p

loc (Ω, w). This
completes the proof of the theorem.
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[3] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate
elliptic equations, Clarendon Press, Oxford, 1993.

[4] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory
integrals, Princeton Univ. Press, 1993.

[5] H. Y. Jia, L. Y. Jiang, On non-linear elliptic equation with weight, Nonlinear anal.,
TMA., 61(2005), 477-483.

[6] J. Kinnunen, Higher integrability with weights, Ann. Acad. Sci. Fenn. Ser. A. I. Math.,
19(1994), 355-366.

[7] F. Chiarenza, M. Frasca, A note on weighted Sobolev inequality, Proc. Amer. Math.
Soc., 93(1985), 703-704.

[8] M. Giaquinta, E. Giusti, On the regularity of the minima of variational integrals, Acta
Math., 148(1982), 31-46.

[9] T. Iwaniec, L. Migliaccio, L. Nania, C. Sbordone, Integrability and removability results
for quasiregular mappings in high dimensions, Math. Scand., 75(1994), 263-279.


