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ABSTRACT. Pseudo-rank functions on Rickart *-rings are introduced and their properties
are studied.

1. Introduction

A real valued function D on a lattice L is called a dimension function if the
range of D has either an upper bound or a lower bound and for all a,b € L,
D(aV b) + D(a Ab) = D(a) + D(b), see; von Neumann [12] p.58. The theory of
dimension functions is studied in various structures. von Neumann [12] introduced
dimensionality in continuous geometries by using perspectivity, whereas Iwamura
[6] used the concept of a relation called the p-relation .

Kaplansky [8], Murray and von Neumann [11] and others have introduced dimen-
sionality in rings of operators by using equivalence of projections. Maeda [10] gener-
alized the work of von Neumann [12] and Kaplansky [8] for a certain class of lattices.
At the same time Loomis [9] gave an abstract setting to the Murray, von Neumann
dimension theory by using complete orthocomplemented lattices. Berberian [2] has
developed theory of dimension functions on the lattice of projections of a finite Baer
*_ring. Goodearl [4] developed the dimension theory for a certain class of modules.
von Neumann [12], p.231 has introduced the concept of a rank-function on a regular
ring which generalizes the dimension function. Goodearl [3], [5] has introduced and
developed the study of pseudo-rank functions on regular rings, which is a general-
ization of rank functions.

In this paper we introduce and study the concept of a pseudo-rank function on a
Rickart *-ring R. We obtain some basic properties of pseudo-rank functions and
the set of all pseudo-rank functions on R, on the lines of Goodearl [5] for Rickart
*_rings. The undefined terms are from Berberian [2] and Birkhoff [1].
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2. Preliminaries

A *-ring is a ring R with an involution “x ”(i.e. an antiautomorphism of period
two) such that ** =z, (x +y)* = 2™ +y*, (2y)* = y*z*. Throughout we denote
by R, a *-ring. An element e € R is called a projection if it is self-adjoint (i.e.
e = e*) and idempotent (i.e. e = e?). The set of projections in R can be partially
ordered by e < f if and only if e = ef, see; Berberian [2]. If for two projections
e,f €R,ef = fe, theninf{e,f} =eA f=ecf and sup{e, f} =eV f=e+ f—ef.
Two projections e, f € R are called equivalent, in notation e ~ f, if there exists
some w € R such that w*w = e and ww* = f. Then w is a partial isometry, (i.e.
ww*w = w) and we = w = fw. For projections e, f € R, we say that f dominates
e, in notation e X f, if e ~ g < f for some projection g € R. Two elements z,y € R
are said to be orthogonal, in notation x L y, if z*y = xy* = 0, see; Loomis [9]
p-26. A *-ring A is called a Rickart *-ring if for each x € A, the right annihilator
of z, R{z}) = {y € A : zy = 0}, is a right ideal generated by a projection. i.
e. R({z}) = gA for some projection g € A. A *-ring A is called a Baer *-ring if
the right annihilator of any nonempty subset S of A is the right ideal generated
by a projection e € A i. e. R(S) = eA. In this case, the projection 1 — e is
called the right projection of S. Similarly the left projection of S is defined. The
right projection (respectively, left projection) of an element x in a Rickart *-ring is
denoted by RP(z) (respectively, by LP(x)) and it is the smallest projection e such
that ze = x (ex = x) and zy = 0 is equivalent to RP(x)y = 0 (yLP(z) = 0). It is
known that a *-ring with proper involution (i.e. z*x = 0 implies z = 0 )is a poset
under the partial order (called the *-order) x < y iff z*ax = z*y and zz* = zy*,
see; Janowitz [7]. This partial order generalizes the partial order defined on the set
of projections. A Rickart *-ring has proper involution.

3. Pseudo-rank function

A pseudo-rank function f on a *-ring R is a mapping f : R — [0, 1] such that

zy) < f(x), f(y) for all 2,y € R,
x+y) = f(z)+ f(y) for all orthogonal z,y € R,
x) = f(z*) = f(RP(x)) = f(LP(x)) provided RP(x), LP(z) exist in R.

It is clear that f(0) = 0. A pseudo-rank function f with the property f(z) > 0, for
x # 0 is called a rank function on R.

Proposition 1. Let R be a *-ring and f be a pseudo-rank function on R.
(1) Ifzy, - ,zn € R are mutually orthogonal then f(z1+---+z,) = Y iy f(z;).

(2) If the involution in R is proper and x <y then f(z) < f(y).
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(3) If the involution in R is proper and x1, - ,x, and yi, - ,yr are sets of
orthogonal elements in R such that x1 + -+ 4+ x, < y1 + -+ + yr, then

Yy Flai) < X0y -
(4) If e, g are projections in R, such that e ~ g then f(e) = f(g).

(5) Ifer, -+ ,en and g1,--- ,gr are sets of orthogonal projections in R such that
1+ ten 391+ gk then 0 fler) < 30, f(90).

Proof. (1) Follows from the definition of a pseudo-rank function.
(2) z <y iff z*z = 2™y and za* = zy*. By the definition of a pseudo-rank function
fl@) = fla*z) = f(z"y) < f(y).
(3) Using (2) and the definition of a pseudo-rank function we have >0 | f(z;) =
J@i -t an) < flyr+ -+ ) = X f(2).
(4) e ~ g implies e = w*w, g = ww* for some partial isometry w € R. Then
w = ww*w = gw = we and so f(e) = f(w*w) < f(w) = f(gw) < f(g). Similarly
f(g) < fle).
(5) Follows from (4)and (3). O

It is known that for a projection e in a Rickart *-ring R, eRe is a Rickart *-ring,
see; Berberian [2] p.15.

Lemma 1. Let f be a pseudo-rank function on a Rickart *-ring R. Let e € R be a
nonzero projection such that f(e) # 0.

(1) The function Q(z) = f(x)/f(e) defines a pseudo-rank function on the Rickart
*-ring eRe.

(2) If e is a central projection in R then the function Q(x) = f(ex)/f(e) defines
a pseudo-rank function on R.

(3) Ife is a central projection such that f(e) =1 then f(ex) = f(x) for allz € R.

Proof. (1) x € eRe implies © = ex = ze. Hence f(x) = f(ex) < f(e) shows that
Q(z) < 1. Thus @ maps eRe into [0,1]. By Corollary p.15 from Berberian [2], for
x € eRe, RP(x), LP(x) are same whether calculated in R or in eRe. Hence the
remaining properties for ) to be a pseudo-rank function can be easily verified.
(2) Since f(ex) < f(e) for all x € R, @ maps R into [0, 1].
(i). Clearly Q(1) = 1.
(ii). For z,y € R, f(exy) < f(ex), f(ey) and so Q(zy) < Q(x), Q(y).
(iii). Suppose z L y in R. Since, e is a central projection it follows that ex L ey.
Hence Qi +y) = f(ex -+ ey)/1(¢) = Q) + Q).
(iv). Since (ex)* = ex™, we get Q(z) = Q(x™).

To show that Q(z ) Q(RP(x)), we first show that eRP(z) = RP(ex). From
x = xRP(x) we get ex = exRP(x). Hence ex[1 — eRP(z)] = 0 and so RP(ex)[l —
eRP(x)] = 0. Thus RP(ex) = RP(ex)eRP(x).
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On the other hand, ex = exRP(ex) implies z[eRP(ex) —e] = 0 and so
RP(z)[eRP(ex) — e] = 0 i.e. RP(z)eRP(ex) = eRP(x). Since e is a central pro-
jection it follows from the Lemma p.137 from Berberian [2] that RP(ex) < RP(x).
Thus RP(z) and RP(ex) commute with each other. This shows that RP(ex) =
eRP(zx).

Thus Q(x) = f(ex)/f(e) = F(RP(ex))/f(e) = (eRP(x))/f(e) = Q(RP(x)). Sim-
ilarly we get Q(z) = Q(LP(x)).
) =

(3) We have f(x f(xe—i—x(l —e)) = f(ze) + f(z(1 —¢)). Also, 1 = f(1) =
fle+(1—e)) = ((e + f(1—e) implies f(1—¢) =0. Now f(z(l—e)) < f(1—e) =

leads to f(x) = f(ze). O
Lemma 2. Let {e1, -+ ,en} be a set of orthogonal projections in a Rickart *-ring
R. Suppose I, J are nonempty subsets of {1,--- ,n}. Let o and 3; be nonzero real

numbers. For each i € I and j € J, let P; and Q; be pseudo-rank functions on
eiRe; and ejRe; respectively. If 30, 5 aiPi(esze;) = 325 BQj(ejxe;) for every
r € R, then I =J, a; = 3; and P; = Q; for each i.

Proof. Let t € J. Then using eje, = 0 for j # ¢, Q;(0) = 0 and Q;(e;) =1
we get > oy Pi(ewer) = 30,5 BiQj(ejxzer) = By # 0. Hence Py(eser) # 0 for
some s € I. This implies egse; # 0 and so s = ¢, i.e. t € [. Thus J C I. Sim-
ilarly we get I C J. Given s € I, y € esRes then using e;es = 0 for i # s we
get, asPs(z) = Y,  aiPi(eire;) = ZjeJﬁij(ejxej) = BsQs(x). In particular
as = asPs(es) = B:Qs(es) = Bs. Consequently Py(x) = Qs(x) for every = € esRes.
Thus Ps = Q5. O

Lemma 3. Let {e1, -+ ,e,} be a set of orthogonal central projections in a Rickart
*-ring R. Suppose I, J are nonempty subsets of {1,--- ,n}. Let oy and B; be
nonzero real numbers. For each i € I and j € J, let P; and Q; be pseudo-rank
functions on R such that Pi(e;) = 1 and Q,(e;) = 1. If Zzelal (ejre;) =
ZjeJﬂij(ejxej) for every x € R, then I = J, a; = §; and P; = Q; for each
1el.

Proof. Let t € J. Then using Lemma 1(3) we get Q;(e:) = Q;(eje;) = 0. Hence
Yicr@iPi(er) = Zje]ﬁij(et) = [tQ+(er) = B¢ # 0. Therefore Py(e;) # 0 for
some s € I. This implies ege; # 0 and so s = ¢, i.e. t € I. Thus J C I. Similarly
we get [ C J.

Given s € I, x € R we have by using Lemma 1(3), a;Ps(z) = asPs(esx) =
Zie[ ai‘Pi(eies‘r) = ZjeJﬁij(ejesx) = ﬂst(esx) = 65@ ({E) In particular
as = asPs(es) = BsQs(es) = Bs. Consequently Ps(z) = Qq(x) for every x € R.
Thus P, = Q. O

Lemma 4. Let e1,--- ,e, be orthogonal central projections in a Rickart *-ring R.
Let f be a pseudo-rank function on R such that >, f(e;) =1 and f(e;) # 0 for
all 1.

(a) There exist unique pseudo-rank functions P;,1 < i < n, on e;R such that
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f(z) =31 f(e;)Pi(e;x) for all x € R.

(b) There exist unique pseudo-rank functions Q;,1 < i < n, on R such that

Qie;) =1 and f(z) =>"", f(e;)Q;(z) for all z € R.

Proof. Since ey, -+ , e, are orthogonal central projections in R, f(e1 + -+ e,) =
i, f(e;) = 1. Hence by Lemma 1(3), f(z) = f(erx + -+ epz) = > iy f(e;x).
(a) For each i, 1 <4 < n by Lemma 1(1), P;(z) = f(x)/f(e;) defines a pseudo-rank
function P; on e;R. Given any = € R, we then have f(e;z) = f(e;)P;(e;z) for each
i. Hence f(z) =Y., f(ei)P(e;z). Uniqueness follows from Lemma 2.

(b) For each 4, by Lemma 1(2), Q;(z) = f(e;x)/f(e;) defines a pseudo-rank func-
tion @; on R. We note that @Q;(e;) = 1. Given any € R, we then have
fle;x) = f(ei)Qi(x) for all . Hence f(z) = Y., f(e;)Qi(z). Uniqueness fol-
lows from Lemma 3. O

Theorem 1. Let R be a Rickart *-ring and e1,--- , e, be orthogonal central pro-
jections in R such that ex +---+e, = 1.

(a) Suppose I is a nonempty subset of {1,--- ,n}. Let o; be positive real numbers
such that ), ;a; = 1. For each i € I, let P; be a pseudo-rank function on
e;R. Then f(x) =) ;c; aiPi(eix) is a pseudo-rank function on R.

(b) Let a;, 1 < i < n be nonnegative real numbers such that ) ;. c; = 1.
For each i € I, let P; be a pseudo-rank function on e;R. Then f(z) =
Yo aiPi(e;x) is a pseudo-rank function on R.

(¢) Every pseudo-rank function on R may be uniquely obtained as in (a). More-
over, if there exists at least one pseudo-rank function on each e; R, then every
pseudo-rank function on R may be obtained as in (b).

Proof. (a) and (b) follow from the definition of a pseudo-rank function.

(c) Let f be a pseudo-rank function on R. Let I be the set of those ¢ € {1,--- ,n}
for which f(e;) # 0. Put a; = f(e;) for all s € I. Then ) .., c; = > ;) flei) =
fle1+---+e,) = f(1) = 1. By Lemma 4(a) there exist pseudo-rank functions P;
on e; R for each i € I such that f(x) = >, ; a;P;(e;x) for all x € R. Thus f has a
representation as in (a).

Suppose that there exists at least one pseudo-rank function on each e; R. Put
a; = f(e;) foralli =1,--- n. Fori e {1,--- ,n} — I, let P; be any pseudo-rank
function on e;R. Then f(x) = Y, i Pi(e;x) = Yi_; i Py(e;x) for all x € R,
which represents f as in (b). O

The proof of the following lemma follows from the definition of a pseudo-rank
function.

Lemma 5. Let Ry, Ry be two Rickart *-rings, f : R1 — Ra be a *~homomorphism
satisfying the condition f(RP(x)) = RP(f(x)). If g is a pseudo-rank function on
R, then go f is a pseudo-rank function on Ry.
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An ideal I of a Rickart *-ring is called a strict ideal, if © € I implies RP(x) € I,
see; Berberian [2] p. 141.

Lemma 6. Let f be a pseudo-rank function on a Rickart *-ring R. The set
A={x € R: f(x) =0} is a proper strict ideal of R.

Proof. Since f(0) = 0, A is nonempty. Also, f(x) = f(z*) = f(RP(x)) shows that
if z € A, then «*, RP(z) € A. Clearly, for x € A and y € R; f(ay) < f(x) implies
zy € A. Similarly yr € A. Let z,y € A. Then f(z+y) = f(RP(z+vy)). By Lemma
on p. 137 from Berberian [2], RP(z +y) < RP(z) V RP(y). For convenience write
RP(z) =e and RP(y) =g. Then eV g = g+ RP[e(1 — g)] with g L RP[e(1 — g)].
We have flg+ RP(e(1—))] = £(9)+ fIRP(e(1—g))] = F(RP()) + fle(1—g)]. We
have f(g) = F(RP(y)) = f(y) =0 and fle(1 —g)] < f(c) = f(RP(z)) = f(z) = 0.
Hence f(x+vy) = f(RP(x+vy)) < f(eVg)=0. Thus z+y € A and so A is a strict
ideal of R. Since f(1) =1, A is a proper strict ideal. |

The following result is from Berberian [2] (Exercise 1, p. 144).

Lemma 7. Let I be a strict ideal of a Rickart *-ring R. Equip R/I with the natural
*-ring structure and write x — T for the canonical mapping R — R/I.

(1) R/I is a Rickart *-ring.
(2) RP(z) = (RP(x)), LP(z) = (LP(x)), for all x € R; in particular, every

projection in R/I has the form & with e a projection in R.

(3) For all projections e, f € R, eV f=eV f andeAN f=eA f.

(4) If u,v are orthogonal projections in R/I and if v = f, f a projection in R,
then there exists a projection e € R such that uw =€ and e is orthogonal to f.

Lemma 8. Let R be a Rickart *-ring in which every projection is central. Let I be
a strict ideal of R. Let u,v € R/I and v ="0 for some b € R.

(1) If u <w, then there exists a € R such that w =a and a <.
(2) If u L v, then there exists a € R such that w =a and a L b.

Proof. Let u = T for some = € R.

(1) We note that v < v implies u*u = v*v = v*u and wu* = wv* = vu* in R/I.
Then in R/I

(a) r*r = 2*b = b*rand xx* = xb* = br*.

Put a = bRP(z). Since all projections are central, RP(xz) = RP(x*). We have
a*a = a*b =b*a and aa* = ba* = ab*. Thus a < b in R. Moreover, x*a = x*b and
az* = bz*. Hence in R/I,

(b) x*r = x*b = xv*a and za* = br* = ax*.
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Thus, in R/I, T < a@. Further we have, zz* = ax* = za*. Hence

Z[z* —a*]a = 0. This implies RP(Z)[2* — a*]a = 0. Thus RP(z)z*a =
RP(z)a*a. Using RP(z)x* = z* and RP(x)a* = a*, we get *a = a*a. Therefore,
(@—7)*(@a—7) = 0. Since R/I is a Rickart *-ring, its involution is proper and so
wegeta—x=0. Thusa=7=.

(2) Suppose u L v in R/I. Then u*v = 0 implies z*b = 0 and so 2*RP(b) = 0,
consequently, zRP(b) =0, T = z[1 — RP(b)]. Put a = z[1 — RP(b)]. As all projec-
tions are central, we get a*b = ab* = 0. Hence a L b in R. Also we have a =7. [

Lemma 9. Let f be a pseudo rank function on a Rickart *-ring R, in which all
projections are central. Let I be a strict ideal of R, such that I C ker(f). Then
there exists a pseudo rank function g on R/I such that go ¢ = f. Further g is a
rank function iff I = ker(f).

Proof. Let ¢ be the canonical *-homomorphism from R to R/I. Suppose z,y € R
and ¢(z) = ¢(y). Then ¢p(x—y) =0and sox—y € I C ker(f) implies f(x—y) = 0.
We have + = (r — y) + y. By the Lemma on p. 137 from Berberian [2]
RP(z) < RP(zx —y) V RP(y). Put RP(x —y) = e and RP(y) = g. We have
eVg=e+ RP[g(1 —e)] with e L RP[g(1 — e)]. Hence

f(x) = f(RP(x)) < f(e) + f[RP(g(1 —e))] = f(z —y) + flg(L —e)] < fg) = f(y).
Similarly, we get f(y) < f(z). Thus f(z) = f(y). Define a map g : R/I — [0, 1], by

g(T) = f(x). In view of the above para g is well defined. We have g(1) = 1, ¢(7y) <
9(Z),9(y). Let T, € R/I and T L j. Then by Lemma 8 there exist a,b € R such

that a L b, a =7 and b =7. We have

g9lT +7] = gla+b] = fla+ 0] = f(a) + f(b) = 9(Z) + 9(¥)-
Thus g is a pseudo rank function. We have for z € R, go¢(z) = g(0) = f(0) =0=
flx)ifx el Ifx¢lI,then goo(x) =g(x) = f(x). Thus go ¢ = f.
Clearly, g is unique.
We note that if ¢ # 0in R/I then g(z) > 0iff « ¢ I iff & ¢ ker(f). Thus I = ker(f).
Conversely, if I = ker(f), then g(x) > 0 for  # 0. Thus g is a rank function iff
I = ker(f). O

Lemma 10. If f, g are pseudo-rank functions on a Rickart *-ring R such that
f(e) < g(e) for all projections e € R, then f = g.

Proof. If f # g, then f(x) < g(z) for some x € R. This implies f(RP(z)) <
g(RP(z)). Put e = RP(z). Using f(1 —e) < g(1 —e) we get

l=f(1)=fle+(1-¢)=fle)+f(1—e)<gle)+g(l—e)=g(1)=1,
a contradiction. |

We recall some terms from Birkhoff [1], p. 5. The length of a poset P is defined
as the least upper bound of the lengths of the chains in P and it is denoted by
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I(P). If I(P) is finite then P is said to be of finite length. Let P be a poset of
finite length and with 0 and a € P. The height of a, denoted by h(a), is defined as
the least upper bound of all chains in [0,a]. It is known that in a modular lattice
h(aVb)+ h(a Ab) = h(a) + h(b). The following two results are from Janowitz [7].

Theorem 2. Every interval [0,x] of a Rickart *-ring is an orthomodular lattice.

Lemma 11. Let R be a Rickart *-ring, x € R. The interval [0, x] is orthoisomor-
phic to {e € C(z*z)|le < x }, where C(x*x) dentes the set of all projections f € R
which commute with x*x. Moreover, [0,x] is orthoisomorphic to [0, z*].

In the notations of Berberian [2], we have 2" = RP(x).

Theorem 3. Let R be a Rickart *-ring, considered as a poset, of finite length
and in which each projection is central. Then the function N on R defined by
N(z) =inf{m/n:m,n € Z,m >0,n >0 and nh(z) < mh(l)} is a pseudo-rank
function on R.

Proof. For all z € R, put N(z) = inf{m/n : m,n € Z > 0andnh(xz) < mh(1)}.
From Lemma 11, we get h(z) = h(z*) = h(RP(z)). Clearly, h(RP(z)) < h(1)
and so h(x) < h(1l). Hence 0 < N(x) < 1. Suppose, N(1) < 1. Then there
exist positive integers m,n, m < n such that nh(1l) < mh(1) but this is not pos-
sible as h(1) is a positive integer. Thus N(1) = 1. Let z,y € R. Then h(zy) =
h(RP(zy)). By Lemma on p. 137, from Berberian [2], RP(zy) < RP(y). Hence
h(RP(zy)) < h(RP(y)). Also we get LP(xy) < LP(z). Since all projections are
central, LP(a) = RP(a) for alla € R. Thus RP(xzy) < RP(x). Let m,n be any pos-
itive integers such that nh(z) < mh(1).Then nh(zy) < mh(1) and so N(zy) < m/n.
Thus N(zy) < N(z). Similarly, N(zy) < N(y). Let z,y € R be such that « L y.
This implies RP(z) L RP(y) and so RP(z)V RP(y) = RP(z) + RP(y). We have
h(z +y) = h(RP(x +y)). By Lemma on p.137 from Berberian, [2],

RP(x +y) < RP(z)V RP(y) = RP(z) + RP(y).

As all projections are central, the lattice of projections in R is distributive. Hence
h(RP(z) V RP(y)) = h(RP(x)) + h(RP(y)). Thus h(z + y) < h(RP(x)) +
h(RP(y)) = h(z) + h(y). Let € > 0 be given. Then there exist positive inte-
gers m,n, s,t such that nh(z) < mh(1) and th(y) < sh(l) and m/n < N(x) + €/2
and s/t < N(y) + €/2. Then nth(x + y) = nth(xz) + nth(y) < mth(l) + nsh(l) =
(mt 4 ns)h(1). Hence

Nz +y) < (m/n)+ (s/t) < N(z) + N(y) +e.

Thus N(z +y) < N(x) + N(y). If N(z +y) < N(z) + N(y), then there exist
positive integers m, n, s, t such that N(z) > m/n and N(y) > s/t, while N(z+y) <
(m/n)+ (s/t). Consequently, there exist positive integers a, b such that bh(z+y) <
ah(l) and a/b < (m/n) + (s/t). Then ant < (mt + ns)b, hence anth(x + y) <
(mt +ns)bh(z+y) < a(mt+ns)h(1). Since N(x) > m/n, we have nh(z) £ mh(1).
Hence mh(1) < nh(z). Now anth(z) + anth(y) = anth(z + y) < a(mt + ns)h(1) <
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anth(x) + ansh(y). Hence anth(y) < ansh(1l). But then N(y) < ans/ant = s/t,
which is false. Thus N(z +y) = N(z) + N(y).
Therefore N is a pseudo-rank function on R. O

4. Properties of the set of pseudo-rank functions

For a Rickart *-ring R, we denote the set of all pseudo-rank functions on R by
P(R) (this set might be empty). We consider it as a subset of the real vector space
RE = {f | f: R — R} equipped with the product topology.

We note that R is a Housdorff topological vector space. The topology on R can
be described in terms of convergence of nets. Given a net {f;} in RF and some
f € R we have f; — f if and only if f;(x) — f(z) for all z € R. A partial order
can be defined on R by f < g iff for each x € R, f(z) < g().

We recall some terms. Let E be a real vector space. A convex combination of points
x1,- -,y € Eisany linear combination of the form a2, +- - -+ a,x, where a; € R
and a; > 0, Z?:l a; = 1. A conver subset of E is any subset K C F such that for
0<a<1landany z,y € K, ar+ (1 —a)y € K. A convezr cone in E is a subset
C C FE such that 0 € C and ax + By € C for all z,y € C' and nonnegative real
numbers o and 8. A convex cone C is called strict if CN(—C) = 0. A subset A of
E is called an affine subspace if it is closed under linear combinations of the form
i, a;x; where 2; € A and > o = 1. A hyperplane in E is an affine subspace of
the form V' + x such that V' is a linear subspace of E of codimension 1. A base for
a strict cone in C' is a convex K C FE such that K is contained in a hyperplane not
containing the origin and C' = {ax : ¢ € Kand a > 0}.

Proposition 2. For a Rickart *-ring R, P(R) is a compact convex subset of RE.

Proof. Clearly P(R) is a convex set.

We note that P(R) is contained in W = [0,1]f which is compact by Tichonoff’s
theorem. Thus it is sufficient to show that P(R) is closed in W. Let N; be a net
in P(R) which converges to some N € W. Since N;(1) — N(1) we have N(1) = 1.
For € R we have N;(x) — N(z) and N;(z*) — N(z*), N;(z) = N;(«*) imply
N(z) = N(z*). Also N;(xy) < N;(x) for all ¢ implies N(zy) < N(z). Similarly
N(zy) < N(y) and if z Ly then N(z+y) = N(z)+ N(y) and N(z) = N(RP(z)) =
N(LP(z)). Thus N € P(R) so P(R) is closed in W. O

A convex subset F' of a convex set K is called a face of K if for z,y € K and
0<a<l,ar+ (1 —a)y € F implies z,y € F.

Lemma 12. Let R be a Rickart *-ring and X C R. Then the set F = {N €
P(R)|N(z) =0 for all x € X} is a closed face of P(R).

Proof. Let N; be a net in F' converging to some N € P(R). Clearly for all z € R,
N;(xz) = 0 for each i and so N(z) = 0. Thus N € F. i. e. F is a closed subset of
P(R). If 0 < a < 1, then for any P, @ € F, [aP+(1—a)Q](z) = 0. Thus F is convex.
Suppose that for some «, 0 < o < 1 and for some P,Q € P(R), aP + (1 — a)Q =
N € F. For all x € X, we have P(z) < a !([aP + (1 — a)Q](z)) = a "t N(x) = 0.
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Thus P(x) =0, i. e. P € F. Similarly @ € F. Therefore, F' is a face of P(R). O

A *-ring R with unity is called factorial if 0 and 1 are the only central projections
in R, see; Berberian [2], p.36.

Lemma 13. Let R be a Rickart *-ring. Let f € P(R) be such that ker(f) = {0}.
If f is an extreme point of P(R) then R is factorial.

Proof. Let z € R be a nonzero central projection in R and z # 1. Then 1 — z is
also a central projection. We have f(z) > 0, f(1—2) > 0 and f(z) + f(1—2) =
1. By Lemma 4(b) there exist pseudo-rank functions g; and g2 on R such that
g1(2) =1, g2(1 — 2) =1 and f(y) = f(2)g1(y) + f(1 — 2)g2(y) for all y € R. Since
91(z) = 1 implies ¢g1(1 — z) = 0 we get g1 # g2. Thus f is a convex combination of
distinct pseudo-rank functions in P(R). This contradicts the assumption that f is
an extreme point. O

A *-ring is said to satisfy the general comparability, (GC), if for any pair of
projections e, f € R there exists a central projection h such that he = hf and
h(1 — f) 3 h(1 —e), see; Berberian [2], p.77.

Lemma 14. Let R be a Rickart *-ring with the generalized comparability and
f €P(R). If f is an extreme point of P(R) then R/ker(f) is factorial.

Proof. Let K = ker(f) and ¢ : R — R/K be the natural homomorphism. By
Lemma 9 there exists a rank function g on R/K such that go¢ = f. Suppose there
exists a nontrivial central projection e € R/K. We have g(e) > 0, g(1 —¢€) > 0
and g(e) + g(1 —e) = 1. By Lemma 4(b) there exist pseudo-rank functions g;
and g2 on R/K such that g1(e) =1, g2(1 —e) = 1 and g = g(u)g1 + g(1 — u)go.
Since g1(e) = 1 implies ¢g1(1 —e) = 0, we get g1 # g2. By Proposition 5, p.141
from Berberian [2] there exists a central projection h € R such that h = e. Then
g1 0¢(h) = gi(e) =1 and g9 0 ¢(h) = ga(e) = 0 show that g; o ¢ # g2 0 ¢. Thus
f=gu)gr oo+ g(l —u)g2 o ¢] is a convex combination of distinct pseudo-rank
functions in P(R). This contradicts the assumption that f is an extreme point. O

Theorem 4. Let R be a Rickart *-ring with the generalized comparability. Let
P € P(R). Consider the following statements.

(1) P is an extreme point of P(R).

(2) B(R)Nker(P) is a mazimal ideal of B(R) where B(R) is the Boolean algebra
of all central projections in R.

(3) ker(P) is a prime strict ideal of R.
(4) The set of strict ideals of the Rickart *-ring R/ker(P) is linearly ordered.
Then (1) = (2) & (3) < (4).

Proof. (1) = (2) Let ker(P) = K. Since K is a proper strict ideal, B(R) N K is
a proper ideal of B(R). If B(R) N K is not maximal, then there exists an ideal
J of B(R) such that B(R)N K C J. Let e € J but e ¢ B(R) N K. Clearly,



Pseudo-Rank Functions on Rickart *-rings 193

1—e ¢ B(R)NK. Then € is a nontrivial central projection in R/K. This contradicts
Lemma 14.
(2) & (3) and (3) < (4) follow from Proposition 1.2 of Thakare and Nimbhorkar

[13]. O
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