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Abstract. Bifurcation method of dynamical systems is employed to investigate exact

solitary wave solutions and kink wave solutions in the generalized modified Boussinesq

equation. Under some parameter conditions, their explicit expressions are obtained. Some

previous results are extended.

1. Introduction and main results

Zhang et al.[1] and Kaya[2] considered the following generalized modified Boussi-
nesq(GMB) equation

(1.1) utt − δuttxx − (a1u + a2u
p+1 + a3u

2p+1)xx = 0,

where δ 6= 0, p > 1, a1, a2 and a3 are arbitrary constants. This equation is used
to represent a nonlinear model of longitudinal wave propagation of elastic rods [2].
When δ = 1, a1 = 1, a2 = 1

p+1 and a3 = 0, (1.1) becomes the equation

(1.2) utt − uttxx − (u +
1

p + 1
up+1)xx = 0,

which was studied in [3], [4]. Clarkson et al.[3] and Bogolubsky[4] gave some solitary
wave solutions of (1.2) with p = 1, 2, 4 and studied the interaction of two solitary
waves numerically. When δ = 1, a1 = 0, a2 = − 1

2 , a3 = 0 and p = 1, (1.1) reduces
to the equation

(1.3) utt − uttxx +
1
2
(u2)xx = 0.
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Parker[5] also studied the solitary wave and exact solutions of (1.3). When δ =
1, p = 1, 2, (1.1) reduces to the equation

(1.4) utt − uttxx − (a1u + a2u
2 + a3u

3)xx = 0,

and

(1.5) utt − uttxx − (a1u + a2u
3 + a3u

5)xx = 0.

Zhang and Ma[6] gave some explicit solitary wave solutions of (1.4) and (1.5)
by using the method of solving algebraic equations. Li and Zhang[7] gave many
explicit solitary wave solutions and kink wave solutions of (1.4) and (1.5) by using
the bifurcation method. Zhang et al.[1] used the judgement methods and solution
formulae to obtain two bell profile solitary wave solutions
(1.6)

u(x, t) =




|a1−v2|(p+2)
√

p+1√
(p+1)a2

2−a3(a1−v2)(p+2)2
sech2 p

2

√
−a1−v2

δv2 (x− vt + ξ0)

2 +
(
−1 + a2|δ|

√
p+1

δ
√

(p+1)a2
2−a3(a1−v2)(p+2)2

)
sech2 p

2

√
−a1−v2

δv2 (x− vt + ξ0)




1
p

,

(1.7)

u(x, t) =




− |a1−v2|(p+2)
√

p+1√
(p+1)a2

2−a3(a1−v2)(p+2)2
sech2 p

2

√
−a1−v2

δv2 (x− vt + ξ0)

2−
(

1 + a2|δ|
√

p+1

δ
√

(p+1)a2
2−a3(a1−v2)(p+2)2

)
sech2 p

2

√
−a1−v2

δv2 (x− vt + ξ0)




1
p

and a kink profile solitary wave solution

(1.8) u(x, t) =

(
− a2(p + 1)

2a3(p + 2)

[
1± tanh

p

2

√
−a1 − v2

δv2
(x− vt + ξ0)

]) 1
p

,

where wave velocity v2 = a1 − a2
2(p+1)

a3(p+2)2 , and when p = 1, a2 = 0, gave a kink wave
solution

(1.9) u(x, t) = ±
√
−a1 − v2

a3
tanh

1
2

√
2(a1 − v2)

δv2
(x− vt + ξ0)

for (1.1).

Zhang[8] used the bifurcation method to obtain a solitary wave solution and
two kink wave solutions of (1.1) when p is even, δ = 1, a3 < 0, a2 > 0 and
a2
2

4a3
< a1 − c2 < 0. Kaya[2] used the Adomian decomposition method to obtain a

solitary wave solution

(1.10) u(x, t) = S1(1 + tanh R(x− ct))
1
p ,
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for (1.1), where p = 1, 4,

(1.11) S1 =
a2(p + 1)
2a3(p + 2)

, R = p

√
−a2

1 + ζ

ζ2δ
, ζ =

√
a1 − a2

2(p + 1)
a3(p + 2)2

.

Rafei et al.[9] used the homotopy perturbation method to obtain a approximate
solitary wave solution of (1.1).

In this paper, we employ similar method used [10,11] to investigate solitary
wave solutions and kink wave solutions of (1.1). To facilitate discussions, we let

(1.12) a∗3 =
(p + 1)a2

2

(p + 2)2(a1 − c2)

for given p, a1, a2 and constant c 6= 0. Our main results are as follows:

1.1 Solitary wave solutions

Under some parameter conditions, we give some solitary wave solutions of (1.1)
in the following Theorem 1 and Theorem 2.

Theorem 1. (1) When p is odd, a2 6= 0 and δ, a1, a3 satisfy one of the following
conditions

(a) δ > 0, a3 > 0 and a1 − c2 < 0,
(b) δ < 0, a3 < 0 and a1 − c2 > 0,
(1.1) has two solitary wave solutions

(1.13) u1(x, t) =
(

(p + 2)(a1 − c2)
α cosh β(x− ct)− a2

) 1
p

and

(1.14) u2(x, t) =
(

(p + 2)(c2 − a1)
α cosh β(x− ct) + a2

) 1
p

,

where

(1.15) α =

√
(p + 1)a2

2 + (p + 2)2(c2 − a1)a3

p + 1
, β =

p

|c|

√
c2 − a1

δ
.

(2) When p is odd, a2 6= 0 and δ, a1, a3 satisfy one of the following conditions
(a) δ > 0, a1 − c2 < 0 and a∗3 < a3 < 0,
(b) δ < 0, a1 − c2 > 0 and 0 < a3 < a∗3,
(1.1) has a solitary wave solution u1(x, t).

(3) When p is odd, δa3 > 0, a2 6= 0 and a1 − c2 = 0, (1.1) has a solitary wave
solution

(1.16) u3(x, t) =
(

4γδc2

γ2p2(x− ct)2 − 4µδc2

) 1
p

,
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where

(1.17) γ = − 2a2

p + 2
, µ = − a3

p + 1
.

Theorem 2. (1) When p is even and δ, a1, a2, a3 satisfy one of the following
conditions

(a) δ > 0, a1 − c2 < 0, a2 6= 0 and a3 > 0,
(b) δ > 0, a1 − c2 < 0, a2 > 0 and a∗3 < a3 < 0,
(c) δ < 0, a1 − c2 > 0, a2 6= 0 and a3 < 0,
(d) δ < 0, a1 − c2 > 0, a2 < 0 and 0 < a3 < a∗3,
(1.1) has two solitary wave solutions ±u2(x, t).

(2) When p is even, a1−c2 = 0 and δ, a2, a3 satisfy one of the following conditions
(a) δ > 0, a2 < 0 and a3 > 0,
(b) δ < 0, a2 > 0 and a3 < 0,
(1.1) has two solitary wave solutions ±u3(x, t).

1.2 Kink wave solutions

Under some parameter conditions, we give some kink wave solutions of (1.1)
in the following Theorem 3 and Theorem 4.

Theorem 3. When p is odd, a2 6= 0, a3 = a∗3 and δ(a1− c2) < 0, (1.1) has two kink
wave solutions

(1.18) u4(x, t) =
(

(p + 2)(c2 − a1)
ωe−β(x−ct) + a2

) 1
p

,

and

(1.19) u5(x, t) =
(

(p + 2)(c2 − a1)
ωeβ(x−ct) + a2

) 1
p

,

where ω is an arbitrary constant satisfied ωa2 > 0 and β is in (1.15).

Theorem 4. When p is even, a3 = a∗3 and δ, a1, a2 satisfy one of the following
conditions
(a) δ > 0, a2 > 0 and a1 − c2 < 0,
(b) δ < 0, a2 < 0 and a1 − c2 > 0, (1.1) has four kink wave solutions ±u4(x, t)
and ±u5(x, t).

1.3 Remarks

Remark 1. Some previous results becoming our special cases. For example, our
results u1(x, t) and u2(x, t) become Li’s results (see (4.10) and (4.9) in [7]) when
δ = 1, p = 1 and φi = 0 (i = 1, 3). Our results ±u2(x, t) become Li’s results (see
(5.7) in [7]) when δ = 1 and p = 2. When δ = 1, p = 1 and c = 1, Our results u3(x, t)
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becomes Li’s results (see (4.7) in [7]). When δ = 1, p = 2 and c = 1, Our results

±u3(x, t) become Li’s results (see (5.2) in [7]). When δ = 1, p = 2, a2 = 4
√

(a1−c2)
3

and ω = a2, Our results ±u4(x, t) and ±u5(x, t) become Li’s results (see (5.9) and
(5.10) in [7]).

Remark 2. Our some results obtained by using bifurcation method and Zhang’s
some results [1] obtained by using the judgement methods and solution formulae are
the same, i.e., Zhang’s results (1.6) and (1.7) are the same with our results (1.13)
and (1.14). When ω = a2 and c2 = a1 − a2

2(p+1)
a3(p+2)2 , our results u4(x, t) and u5(x, t)

become Zhang’s result (1.8).

Remark 3. Our results include Zhang’s results[8], i.e., when p is even, δ = 1, a3 <

0, a2 > 0 and a2
2

4a3
< a1 − c2 < 0, our result u2(x, t) becomes Zhang’s result (see

(4.6) in [8]), and our results ±u4(x, t) and ±u5(x, t) become Zhang’s result (see
(4.19) and (4.20) in [8]).

2. Preliminaries

To derive our results, we given some preliminaries in this section. Substituting
u(x, t) = ϕ(ξ) with ξ = x − ct (c is a constant) into (1.1), we have the following
ordinary differential equation

(2.1) c2ϕ′′ − c2δϕ(4) − (a1ϕ + a2ϕ
p+1 + a3ϕ

2p+1)′′ = 0.

Integrating (2.1) twice and letting integral constants be zero, we get

(2.2) c2ϕ− c2δϕ′′ − (a1ϕ + a2ϕ
p+1 + a3ϕ

2p+1) = 0.

Via (2.2) we establish a planar system

(2.3)
dϕ

dξ
= y,

dy

dξ
=

(c2 − a1)ϕ− a2ϕ
p+1 − a3ϕ

2p+1

c2δ
.

Obviously, if let

(2.4) H(ϕ, y) = c2δy2 + ϕ2(
a3

p + 1
ϕ2p +

2a2

p + 2
ϕp + a1 − c2),

then system (2.3) has first integral

(2.5) H(ϕ, y) = h,

where h is integral constant.

In the following, we discuss bifurcation phase portraits of system (2.3).
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2.1 Bifurcation phase portraits when p is odd

Let

(2.6) f(ϕ) = (c2 − a1)ϕ− a2ϕ
p+1 − a3ϕ

2p+1,

then system (2.3) reduces to

(2.7)
dϕ

dξ
= y,

dy

dξ
=

f(ϕ)
c2δ

.

Thus, to study the the distribution of singular points of system (2.3), we need to
investigate the zero points of f(ϕ). If p is odd, a3 6= 0, and a2

2 − 4a3(a1 − c2) ≥ 0,
then we get three zero points of f(ϕ) as
(2.8)

ϕ0 = 0, ϕ− =

(
−a2 −

√
a2
2 − 4a3(a1 − c2)
2a3

) 1
p

, ϕ+ =

(
−a2 +

√
a2
2 − 4a3(a1 − c2)
2a3

) 1
p

,

and two zero points of f ′(ϕ) as

(2.9) ϕ̃1 =

(
−(p + 1)a2 −

√
(p + 1)2a2

2 − 4a3(2p + 1)(a1 − c2)
2a3(2p + 1)

) 1
p

,

(2.10) ϕ̃2 =

(
−(p + 1)a2 +

√
(p + 1)2a2

2 − 4a3(2p + 1)(a1 − c2)
2a3(2p + 1)

) 1
p

.

Suppose (ϕ∗, 0) is a singular point of system (2.7), then at (ϕ∗, 0) the eigenvalue of
the linearized system of system (2.7) is

(2.11) λ±(ϕ∗, 0) = ±
√

f ′(ϕ∗)
c2δ

.

According to the theory of dynamical systems (e.g.,[12,13]), we obtain the following
conclusions.

(1) When δf ′(ϕ∗) < 0, (ϕ∗, 0) is a center point.
(2) When δf ′(ϕ∗) > 0, (ϕ∗, 0) is a saddle point.
(3) When f ′(ϕ∗) = 0, (ϕ∗, 0) is a degenerate saddle point.

Solving equations f
′
(ϕ∗) = 0 and H(ϕ∗, 0) = 0 respectively, we get two bifurcation

curves L1 and L2 as follows

(2.12) L1 : a3 =
1

4(a1 − c2)
a2
2,

and

(2.13) L2 : a3 =
p + 1

(a1 − c2)(p + 2)2
a2
2.
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From the above analysis, we obtain the bifurcation phase portraits of system (2.3)
as Fig.1(A), Fig.2(C), Fig.3(E), Fig.4(G), Fig.5(I) and Fig.6(K).

2.2 Bifurcation phase portraits when p is even

When p is even, similar to above analysis, we obtain the bifurcation phase
portraits of system (2.3) as Fig.1(B), Fig.2(D), Fig.3(F), Fig.4(H), Fig.5(J) and
Fig.6(L).

Figure 1: The bifurcation phase portraits of (2.3) when δ > 0 and a1 − c2 < 0.

Figure 2: The bifurcation phase portraits of (2.3) when δ > 0 and a1 − c2 > 0.

3. Derive of Main Results

In this section, we derive the Theorem i(i = 1, 2, 3, 4). Firstly, we derive the
Theorem 1.
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Figure 3: The bifurcation phase portraits of (2.3) when δ > 0 and a1 − c2 = 0.

Figure 4: The bifurcation phase portraits of (2.3) when δ < 0 and a1 − c2 < 0.

(1) When p is odd, δ > 0, a2 6= 0, a3 > 0 and a1 − c2 < 0, from Fig. 1(A) we
see that system (2.3) has two homoclinic orbits (denote them as Γ1 and Γ2(or Γ∗1
and Γ∗2)(see Fig.7)) which connect with singular point (0, 0).

Fig. 7. Homoclinic orbits Γi and Γ∗i (i = 1, 2) when δ > 0, a3 > 0 and a1 − c2 < 0.
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Figure 5: The bifurcation phase portraits of (2.3) when δ < 0 and a1 − c2 > 0.

Figure 6: The bifurcation phase portraits of (2.3) when δ < 0 and a1 − c2 = 0.

On ϕ-y plane, Γ1 and Γ2 (or Γ∗1 and Γ∗2) are expressed by

(3.1) y2 =
ϕ2(c2 − a1 − 2a2

p+2ϕp − a3
p+2ϕ2p)

c2δ
, ϕ ∈ [ϕ∗1, ϕ

∗
2],

where

(3.2) ϕ∗1 =

(
−(p + 1)a2

(p + 2)a3
− p + 1

a3

√
a2
2

(p + 2)2
+

a3(c2 − a1)
p + 1

) 1
p

,

(3.3) ϕ∗2 =

(
−(p + 1)a2

(p + 2)a3
+

p + 1
a3

√
a2
2

(p + 2)2
+

a3(c2 − a1)
p + 1

) 1
p

.



90 Ming Song and Chengxi Yang

Substituting (3.1) into dϕ
dξ = y, we have

(3.4) ±
√

c2δ

ϕ2(c2 − a1 − 2a2
p+2ϕp − a3

p+2ϕ2p)
dϕ = dξ.

Assuming ϕ(0) = ϕ∗1 and integrating (3.4) along homoclinic orbit Γ1, we get

(3.5)
∫ ϕ

ϕ∗1

|c|
√

δ

s
√

c2 − a1 − 2a2
p+2sp − a3

p+1s2p
ds =

∫ 0

ξ

ds, ξ > 0,

and

(3.6) −
∫ ϕ∗1

ϕ

|c|
√

δ

s
√

c2 − a1 − 2a2
p+2sp − a3

p+1s2p
ds =

∫ ξ

0

ds, ξ ≤ 0.

Completing above two integrals we obtain

(3.7) ϕ(ξ) =
(

(p + 2)(a1 − c2)
α cosh βξ − a2

) 1
p

,

where α and β are in (1.15). From u(x, t) = ϕ(ξ) and ξ = x − ct, we obtain
u1(x, t) as formula (1.13). Similarly, assuming ϕ(0) = ϕ∗2 and integrating (3.4)
along homoclinic orbit Γ2, we get

(3.8)
∫ ϕ∗2

ϕ

|c|
√

δ

s
√

c2 − a1 − 2a2
p+2sp − a3

p+1s2p
ds =

∫ ξ

0

ds, ξ < 0

and

(3.9) −
∫ ϕ

ϕ∗2

|c|
√

δ

s
√

c2 − a1 − 2a2
p+2sp − a3

p+1s2p
ds =

∫ 0

ξ

ds, ξ ≥ 0.

Completing above two integrals we obtain

(3.10) ϕ(ξ) =
(

(p + 2)(c2 − a1)
α cosh βξ + a2

) 1
p

,

where α, β are in (1.15). From (3.10) we obtain u2(x, t) as formula (1.14). Similarly,
we can derive (2), (3) of Theorem 1 and Theorem 2.

Secondly, we derive the Theorem 3. From Fig. 1(A) we see that when p is odd,
δ > 0, a2 6= 0, a3 = a∗3 and a1 − c2 < 0, system (2.3) has two heteroclonic orbits
(denote them as Γi(i = 3, 4)(or Γ∗i (i = 3, 4))(see Fig. 8)) connecting with singular
point (0, 0).
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Fig. 8. Heteroclinic orbits Γi and Γ∗i (i = 3, 4) When δ > 0, a3 = a∗3 and
a1 − c2 < 0.

On ϕ− y plane, Γ3 and Γ4 are expressed by

(3.11) y2 =
ϕ2

c2δ

(
c2 − a1 − 2a2

p + 2
ϕp +

a2
2

(p + 2)2(c2 − a1)
ϕ2p

)
, ϕ ∈ (0, ϕ∗3),

Γ∗3 and Γ∗4 are expressed by

(3.12) y2 =
ϕ2

c2δ

(
c2 − a1 − 2a2

p + 2
ϕp +

a2
2

(p + 2)2(c2 − a1)
ϕ2p

)
, ϕ ∈ (ϕ∗3, 0),

where

(3.13) ϕ∗3 =
(

(p + 2)(c2 − a1)
a2

) 1
p

.

Substituting (3.11) into dϕ
dy = y and integrating it along Γ3 and Γ4 respectively, we

have

(3.14)
∫ ϕ

ϕ̄0

ds

s
√

c2 − a1 − 2a2
p+2sp − a2

2
(p+2)2(c2−a1)

s2p
=

∫ ξ

0

ds

| c |
√

δ

and

(3.15) −
∫ ϕ

ϕ̄0

ds

s
√

c2 − a1 − 2a2
p+2sp − a2

2
(p+2)2(c2−a1)

s2p
=

∫ ξ

0

ds

| c |
√

δ
,

where ϕ(0) = ϕ̄0 ∈ (0, ϕ∗3) is a constant. Solving (3.14) it follows that

(3.16) ϕ(ξ) =
(

2
√

c2 − a1

νe−βξ − 2θ

) 1
p

.

Solving (3.15) we have

(3.17) ϕ(ξ) =
(

2
√

c2 − a1

νeβξ − 2θ

) 1
p

.
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In (3.16) and (3.17) ν is a integral constant, β is in (1.15) and

(3.18) θ = − a2

(p + 2)
√

c2 − a1

.

From (3.16), (3.17) we obtain u4(x, t) and u5(x, t) as (1.18) and (1.19).

Similarly, we can derive the Theorem 4. Substituting ui(i = 1, 2, 3, 4, 5) into
(1.1), we find that they are its solutions indeed.

4. Conclusions

In this paper, we have employed bifurcation method in dynamical systems to
study bifurcation phase portraits of (1.1)(see Fig.1-Fig.6). By using bifurcation
phase portraits, its solitary wave solutions (see expressions (1.13), (1.14), (1.16))
and kink wave solutions (see expressions (1.18) and (1.19)) have been obtained.
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