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Role of Dopamine Receptors on Electroencephalographic Changes
Produced by Repetitive Apomorphine Treatments in Rats
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Repeated psychostimulants induce electroencephalographic (EEG) changes, which reflect adaptation
of the neural substrate related to dopaminergic pathways. To study the role of dopamine receptors
in EEG changes, we examined the effect of apomorphine, the dopamine D1 receptor antagonist,
SCH-23390, and the D2 receptor antagonist, haloperidol, on EEG in rats. For single and repeated
apomorphine treatment groups, the rats received saline or apomorphine for 4 days followed by a 3-day
withdrawal period and then apomorphine (2.5 mg/kg, i.p.) challenge after pretreatment with saline,
SCH-23390, or haloperidol on the day of the experiment. EEGs from the frontal and parietal cortices
were recorded. On the frontal cortex, apomorphine decreased the power of all the frequency bands
in the single treatment group, and increased the theta (4.5~8 Hz) and alpha (8~ 13 Hz) powers in
the repeated treatment group. Changes in both groups were reversed to the control values by
SCH-23390. On the parietal cortex, single apomorphine treatment decreased the power of some
frequency bands, which were reversed by haloperidol but not by SCH-23390. Repeated apomorphine
treatment did not produce significant changes in the power profile. These results show that adaptation
of dopamine pathways by repeated apomorphine treatment could be identified with EEG changes such
as increases in theta and alpha power of the frontal cortex, and this adaptation may occur through
changes in the D1 receptor and/or the D2 receptor.
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INTRODUCTION

Psychostimulants such as amphetamine and cocaine are
widely abused drugs. On acute exposure they evoke hyper-
activity and mind-altered states. On repeated exposure
they enhance their locomotor stimulant effects and stereo-
typies, so called “behavioral sensitization” (Segal and Mandell,
1974; Post and Rose, 1976; Robinson and Becker, 1986;
Vezina and Stewart, 1989; Damianopoulos and Carey,
1993; Stewart and Badiani, 1993). This phenomenon has
been proposed to play a critical role in psychostimulant ad-
diction (Robinson and Berridge, 1993; De Vries et al., 1998;
Deroche et al., 1999; Robinson and Berridge, 2000).

Some studies demonstrate good correlations between
some EEG activity and stereotyped behavior during sensiti-
zation and conditioning with the psychostimulants amphet-
amine (Ferger et al., 1994; Stahl et al., 1997) and cocaine
(Ferger et al., 1996), and the dopamine receptor agonist
apomorphine (Kropf et al., 1989; 1991). Electroencephalo-
graphic (EEG) spectral patterns and field potential are a
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sensitive tool for time-course studies of responses to differ-
ent compounds acting on neurotransmitter systems (Ferger
and Kuschinsky, 1995; Binienda et al., 2000). The sensitiza-
tion is particularly associated with dopaminergic systems
(Vanderschuren and Kalivas, 2000; Steketee, 2003), which
can be evaluated with EEG activity. For example, repeated
administration of psychostimulants specifically increases
the power of the alpha-1 and alpha-2 bands (Ferger et al.,
1996; Stahl et al., 1997).

To investigate whether the EEG changes after repeated
stimulation of dopaminergic pathways measure adaptive
changes in dopaminergic pathways, we used the dop-
aminergic receptor agonist apomorphine for the stimulation
and selective dopamine D1 and D2 receptor antagonists,
SCH 23390 and haloperidol, respectively for differential
block of the adaptational changes.

METHODS

Animals and surgery

Thirty male Sprague-Dawley rats (Hyochang Science,
Daegu, Korea) weighing 280~300 g on the day of surgery
were used in this study. The animals were kept in 12 h

ABBREVIATIONS: APO, apomorphine; EEG, electroencephalogram;
HAIL, haloperidol; SAL, saline; SCH, SCH-23390.
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light-dark cycles (light on from 07:00 to 19:00) and housed
individually in stainless steel cages (23x40x18 cm). The
ambient temperature was maintained at 21~25°C. Except
during experiments, standard laboratory pellet food and tab
water were available ad libitum. The experiments followed
the Guidelines for the Care and Use of Mammals in
Neuroscience and Behavioral Research (2003).

Epidural screw electrodes for EEG recording were im-
planted in the rats under anesthesia with a cocktail of ket-
amine and xylazine (37.5 mg ketamine and 1.9 mg xylazine
in 1 ml saline, 2 ml/kg i.p.). The rat was fixed in a stereo-
taxic apparatus. The scalp was locally anesthetized with
a subcutaneous injection of a mixture of 2% lidocaine and
epinephrine. Then, the midline of the scalp was incised, the
periosteum was removed, and the skull surface was
cleaned, after which 6 small holes were drilled into the fron-
tal bones (2.5 mm anterior to bregma and 2.5 mm lateral
to midline), the parietal bones (2.5 mm posterior to bregma
and 2.5 mm lateral to midline) bilaterally, and the interpar-
ietal bone (2.5 mm posterior to lambda and 2.5 mm lateral
to midline), without perforating the dura. Gold-plated
stainless steel screws (tip diameter 1.2 mm) were inserted
into the holes. Two screw electrodes over the cerebellum
(on the interparietal bones) served as reference and ground
electrodes. Pins connected to screw electrodes with enam-
el-coated copper wires were arranged together in 3x2 ma-
trices and fixed over the skull with dental acrylic.

Drugs

SCH-23390 HC] and apomorphine HCl (Research Biochem.,
Natick, MA) were dissolved in physiological saline.
Haloperidol (Research Biochem., Natick, MA) was dissolved
with a small amount of 0.1 N HCI and then the solution
was diluted with physiological saline. The concentration of
each drug solution was adjusted so that the volume injected
was 1 mUkg body weight. All drugs were administered i.p.

Experimental procedures

The animals were allowed to recover from surgery for at
least one week. The animals were divided into either single
treatment (S: n=15) or repeated treatment (R: n=15)
groups. In the S group, saline (1 ml/kg) injection was re-
peated once a day for 4 days followed by a 3-day withdrawal
period before the apomorphine challenge (2.5 mg/kg). In the
R group, apomorphine (2.5 mg/kg) injection was repeated
once a day for 4 days followed by a 3-day withdrawal period
before the apomorphine challenge. High doses of apomor-
phine produce behavioral sensitization (Castro et al., 1985;
Braga et al., 2008). Each group was subdivided into 3
groups by pretreatment drugs on the day of the experiment:
(1) 1 mlkg of saline (SAL(S): n=5; SAL(R): n=5); (2) 0.04
mg/kg of SCH-23390 (SCH(S): n=5; SCH(R): n=5); and (3)
0.5 mg/kg of haloperidol (HAL(S): n=5; HAL(R): n=5).

On the day of the apomorphine challenge, the animals
were put on a Plexiglas cage (28 cmWx42 ecmDx18 ecmH)
and connected with a swivel system. The rats were accli-
mated to the recording setup in the recording chamber for
about 30 min, followed by EEG recording. Control recording
for 30 min was followed by injection of a pretreatment drug
and subsequent recording for 30 min, and finally by apo-
morphine challenge and recording for 60 min.

EEG measurements

Four-channel EEG signals from the left and right frontal
and parietal cortices were recorded monopolarly with re-
spect to the reference electrode via a bioelectric amplifier
(Model 1700, A-M system, Inc., USA; CyberAmp 380, Axon
instruments Inc., USA). Signals were amplified 10,000%
and filtered with a range of 1 to 60 Hz. They were sampled
by an AD converter (DigiData 1200A, Axon instruments
Inc., USA) at a sampling rate of 200 Hz. Digitized data were
stored into hard disks and analyzed off-line.

Raw EEG signals were inspected prior to the analysis,
and only the artifact-free signals of a 5-min period immedi-
ately before each injection and those of a 5-min period from
25 to 30 min (APO30) and 55 to 60 min (APO60) after apo-
morphine challenge injection were used to calculate power
spectra. Signals were converted to power spectra by the fast
Fourier transform algorithm and the power spectra of 4-sec
sweeps in a 5-min period were averaged to give the power
spectra of a 5-min period by customized Matlab programs
(Matlab R11 version 5.3, The MathWorks, USA). The power
spectra were divided into 7 frequency bands: Deltal, 1~2.5
Hz; Delta2, 2.5~4.5 Hz; Theta, 4.5~8 Hz; Alpha, 8~13
Hz; Betal, 13~20 Hz; Beta2, 20~ 30 Hz; and Gamma, 30~
50 Hz. The log transformed values of the powers are given
in figures and used for statistical analysis.

Statistical analysis

We analyzed unilateral EEG signals from the one frontal
and one parietal cortices because bilateral power spectra
are similar. All data are expressed as mean+=S.E.M. Stati-
stical analysis for control, single and repeated treatments,
or among different pretreatments was performed with
one-way ANOVA and Dunnett’s t-tests (SPSS 12.0K,
Datasolution, Korea), and p<0.05 was considered statisti-
cally significant.

RESULTS
EEG of the frontal cortex

We first tested the effects of apomorphine (2.5 mg/kg, i.p.)
challenge on EEG band powers in the frontal cortex of the
S and R groups (Fig. 1). Apomorphine significantly de-
creased the powers of Deltal, Delta2, Betal, and Beta2 in
the S group, but increased Alpha power in the R group com-
pared to controls. Band power profiles produced by apomor-
phine were similar 30 min and 60 min after administration,
though the magnitude decreased with time. The Theta and
Alpha powers were significantly higher in the R group than
in the S group.

We then examined effects of the dopamine antagonists,
SCH-23390 and haloperidol, on the power changes pro-
duced by apomorphine challenge (Fig. 2). SCH-23390
blocked the decreased power in Deltal, Delta2, Betal, and
Beta2 bands in the S group and reduced the increased pow-
er in the Theta and Alpha bands in the R group, as well
as decreasing Delta2 and Betal power bands in the R group
compared to controls (Fig. 2A and 2B). Haloperidol reversed
the decrease in the powers of Deltal, Delta2, Betal, and
Beta2 bands by apomorphine and increased the power of
Deltal band in the S group above controls (Fig. 2C).
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Fig. 1. EEG band powers of the

O Control(S) frontal cortex after apomorphine
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Fig. 2. EEG band powers of the
frontal cortex 25~30 min after
apomorphine (APO) injection in single
(S, upper panel, A and C) and repeated
(R, lower panel, B and D) treatment
groups pretreated with: SCH-2390
(SCH, A and B) and haloperidol
(HAL, C and D). Each point and bar
represent the meantS.E.M. *Signi-
ficantly different from the control
state; "Significantly different from
saline (SAL) pretreatment (p<0.05
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8- Control(R) parietal cortex after apomorphine
= APOBO(R) (APO) treatment in single (S) and

repeated (R) apomorphine treatment
groups. (A) Band powers in the con-
trol state and 25~30 min after APO
injection; (B) Band powers in the
control state and 55~60 min after
APO injection. Each point and bar
represent the mean=S.E.M. *Signifi-
cantly different from the control state
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Haloperidol significantly increased the power of the Delta2
band in the R group over the S group (Fig. 2D).

EEG of the parietal cortex
We similarly tested the effects of apomorphine challenge

on EEG band powers in the parietal cortex (Fig. 3).
Apomorphine only decreased the powers of Alpha and

G : , .
Deitat Delta?2 Theta Alpha Betat Beta2 Gamma

(p<0.05 by ANOVA, t-test).

Betal bands, but Deltal and Delta2 bands, in the S group.
Apomorphine did not increase the power of Alpha band
of the parietal cortex in the R group. SCH-23390 did not
affect apomorphine-induced changes in the S and R groups
(Fig. 4A and 4B), but haloperidol reversed all apomor-
phine-induced decreases in the powers of Alpha and Betal
bands in the S group and increased further the power of
the Delta bands (Fig. 4C). Haloperidol reversed apomor-
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phine-induced power decreases and further increased the
powers of all frequency bands except Gamma over controls
in the R group (Fig. 4D).

DISCUSSION

Chronic apomorphine treatment caused different changes
than acute treatment in the EEG band power profile of the
frontal cortex, but not the parietal cortex. These frontal cor-
tex changes could be reversed by the dopamine D1 receptor
antagonist, SCH-23390, but not by the dopamine D2 re-
ceptor antagonist, haloperidol. In the parietal cortex, hal-
operidol decreased the power of all frequency bands but
SCH-23390 had no effect.

Acute apomorphine treatment decreased the power of all
frequency bands in the frontal cortex, whereas chronic
treatment increased Theta (4.5~8 Hz) and Alpha (8~ 13 Hz)
bands. These results are similar to changes induced by 0.6
mg/kg amphetamine (Stahl et al.,, 1997) and 20 mg/kg co-
caine (Ferger et al., 1996). Lower doses of amphetamine
or cocaine do not cause changes in either acute or chronic
treatment (Ferger et al., 1996; Stahl et al., 1997), indicating
that neural adaptation requires strong stimulation of dop-
amine receptors.

SCH-23390 could block the acute apomorphine-induced
decreases in band power, as shown with amphetamine
(Ferger et al., 1994), and decrease the theta and alpha pow-
ers below even control levels. Apomorphine directly acti-
vates dopamine receptors, whereas amphetamine and co-
caine act indirectly on dopamine release or other receptor
pathways. Chronic apomorphine treatment may increase
the contribution of D1 receptors through adaptation.
Haloperidol could also block acute apomorphine activity but
not after chronic exposure, indicating a diminishing D2 re-
ceptor component. However, activation of D2 receptors after

Delta2 Theta Alpha Betal Beta2 Gamma (SAL) pretreatment (p <0.05 by AN-

OVA, t-test).

acute and/or repeated administration of (large doses of) psy-
chostimulants leads to the activation of alphal band (7.0~
9.5 Hz) and alpha2 band (9.75~12.5 Hz) that overlap with
Alpha (8~13 Hz) in this study (Kropf et al., 1989; Kropf
and Kuschinsky, 1993; Ferger et al.,, 1994; Ferger and
Kuschinsky, 1995; Ferger et al., 1996; Stahl et al., 1997).
Deltal and Delta2 band powers showed consistent in-
creases unrelated to apomorphine treatment. Haloperidol
increased power in the Delta bands, which may be associa-
tedwith sedative effect (Kwon et al., 2005), but did not af-
fect adaptation to apomorphine treatment.

Here, chronic dopamine stimulation increased Theta and
Alpha power. Conversely, chronic dopamine hypostimulation
in rats with a 6-hydroxydopamine lesion of the medial fore-
brain bundle showed notable decreases in theta and alpha
bands and an increase in the fast wave band power
(Vorobyov et al., 2003). Therefore, changes in Theta and
Alpha activities may reflect adaptation of dopamine
neurotransmission.

Acute apomorphine administration decreased the power
of some frequency bands in the parietal cortex, which could
be reversed by the D2 receptor antagonist, but chronic
treatment did not. The frontal cortex, particularly the pre-
frontal cortex, has more afferents from the mesocortical
dopamine pathway than the parietal cortex. Adaptation
may not occur in the parietal cortex because of insufficient
dopaminergic innervation.

Dopamine receptors, particularl D1 receptors, influence
behavioral sensitization (Castner and Williams, 2007).
Here, a D1 antagonist could block the changes in theta and
alpha bands induced by chronic apomorphine. However,
acute apomorphine decreased the same band powers that
were increased by chronic treatment, whereas behavioral
sensitization such as hyperlocomotion and stereotypy oc-
curs after acute apomorphine treatment and is potentiated
by repeated apomorphine treatment. These band power
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changes may still reflect changes in dopamine neurotrans-
mission, as apomorphine challenge was required to change
band power profiles in both naive rats and apomor-
phine-treated rats. This finding suggests that the resting
state is similar in both groups, but stimulation of dop-
aminergic activity reveals the altered neural substrate
through abnormal behavior and EEG changes.

In conclusion, repeated apomorphine administration
could change EEG band power as a reflection of dop-
aminergic adaptation with or without sensitization. These
changes included increases of Theta and Alpha power, as
well as behavioral changes, from hyperstimulation of the
D1 receptor and/or the D2 receptor in the mesolimbic-meso-
cortical dopaminergic pathway. The results suggest that
stimulating dopamine neurotransmission reveals the un-
derlying alterations in function that occur in addiction to
psychostimulants.
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