An Overview of Peak-to-Average Power Ratio Reduction Schemes for OFDM Signals

  • Lim, Dae-Woon (Department of the Information and Communication Engineering, Dongguk University) ;
  • Heo, Seok-Joong (Department of Electrical Engineering and Computer SCience, Seoul National University, INMC) ;
  • No, Jong-Seon (Department of Electrical Engineering and Computer SCience, Seoul National University, INMC)
  • Published : 2009.06.30

Abstract

Orthogonal frequency division multiplexing (OFDM) has been adopted as a standard for various high data rate wireless communication systems due to the spectral bandwidth efficiency, robustness to frequency selective fading channels, etc. However, implementation of the OFDM system entails several difficulties. One of the major drawbacks is the high peak-to-average power ratio (PAPR), which results in intercarrier interference, high out-of-band radiation, and bit error rate performance degradation, mainly due to the nonlinearity of the high power amplifier. This paper reviews the conventional PAPR reduction schemes and their modifications for achieving the low computational complexity required for practical implementation in wireless communication systems.

Keywords

References

  1. IEEE 802.11a-1999 part (R2003) Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: High speed physical layer in the 5 GHz band
  2. W. Y. Zou and Y. Wu, 'COFDM: An overview,' IEEE Trans. Broadcast., vol. 41, no. 1, pp. 1-8, Mar. 1995 https://doi.org/10.1109/11.372015
  3. E. Costa, M. Midro, and S. Pupolin, 'Impact of amplifier nonlinearities on OFDM transmission system performance,' IEEE Commun Lett., vol. 3, pp.37-39, Feb. 1999 https://doi.org/10.1109/4234.749355
  4. S. H. Muller, R. W. Bauml, R. F. H. Fischer, and J. B. Huber, 'OFDM with reduced peak to average power ratio by multiple signal representation,' Ann. Telecommun., vol. 52, no. 1-2, pp. 58-67, Feb. 1997
  5. J. Tellado and J. M. Cioffi, 'PAR reduction in multicarrier transmission systems,' ANSI Document, TIEl.4 Technical Subcommittee, no. 97-367, pp. 1-14, Dec. 8, 1997
  6. H. Ochiai and H. Imai, 'Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems,' IEEE J. Sel. Areas Commun., vol. 18, no. 11, Nov. 2000
  7. T. Jiang and Y. W. Wu, 'An overview: Peak to average power ratio reduction techniques for OFDM signals,' IEEE Trans. Broadcast., vol. 54, no. 2, pp. 257-268, June 2008 https://doi.org/10.1109/TBC.2008.915770
  8. S. H. Han and J. H. Lee, 'An overview of peak to average power ratio reduction techniques for multicarrier transmission,' IEEE Wireless Commun., vol. 54, no. 2, pp. 257-268, Sept. 1999
  9. L. Wang and C. Tellambura, 'An overview of peak to average power ratio reduction techniques for OFDM systems,' in Proc. IEEE ISSPIT, 2006, pp.840-845 https://doi.org/10.1109/ISSPIT.2006.270915
  10. M. Sharif, M. Gharavi-Alkhansari, and B. H. Khalaj, 'On the peak to average power of OFDM signals based on oversampling,' IEEE Trans. Commun., vol. 51 , no. 1, pp. 72-78, Jan. 2003 https://doi.org/10.1109/TCOMM.2002.807619
  11. R. V. Nee and A. D. Wild, 'Reducing the peak to average power ratio of OFDM,' in Proc. IEEE VTC, vol. 43, May. 1998, pp. 18-21
  12. K. G. Paterson and V. Tarohk, 'On the existence and construction of good codes with low peak to average power ratios,' IEEE Trans. Inf Theory,vol. 46, no. 6, pp. 1974-1987, Sept. 2000 https://doi.org/10.1109/18.868473
  13. H. Ochiai and H. Imai, 'On the distribution of the peak to average power ratio in OFDM signals,' IEEE Trans. Commun., vol. 49, no. 2, pp. 282-289, Feb. 2001 https://doi.org/10.1109/26.905885
  14. M. Blachman, "The output signals and noise from a nonlinearity with amplitude-dependent phase shift," IEEE Trans. lnf Theory,vol. 25, pp. 77-79, Jan. 1979 https://doi.org/10.1109/TIT.1979.1055981
  15. W. G. Jeon , K. H. Chang, and Y. S. Cho, 'An adaptive data predistorter for compensation of nonlinear distortion in OFDM systems,' IEEE Trans Commun., vol. 45, pp. 1167-1171, Oct. 1997 https://doi.org/10.1109/26.634677
  16. K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, 'Look-up table techniques for adaptive digital predistortion: A developement and comparison,' IEEE Trans. Veh. Technol., vol.49, pp.1995-2002, Sept. 2000 https://doi.org/10.1109/25.892601
  17. L. Cimini 'Analysis and simulation of a digital mobile channel using OFDM,' IEEE Trans. Commun., vol. com-33, no. 7, July 1985
  18. R. O'neil and L. Lopes, 'Envelope variations and spectral splatter in clipped multicarrier signals,' in Proc. IEEE OUNRC, Sept. 1995, pp. 71-75
  19. J. Amstrong, 'Peak to average power reduction for OFDM by repeated clipping and fequency domain filtering,' IEE Electron. Lett., vol. 38, no. 5, pp. 246-247, Feb. 2002 https://doi.org/10.1049/el:20020175
  20. H. Chen and A. M. Haimovich, 'Iterative estimation and cancellation of clipping noise for OFDM signals,' IEEE Commun. Lett., vol. 7, pp. 305-307, July 2003 https://doi.org/10.1109/LCOMM.2003.814720
  21. X. Li and L. J. Cimini Jr., 'Effects of clipping and filtering on the performance of OFDM,' IEEE Commun. Lett., vol. 2, no. 5, pp. 131-133, May 1998 https://doi.org/10.1109/4234.673657
  22. M. Pauli and H. P. Kuchenbecker, 'Minimization of the intermodulation distortion of a nonlinearly amplified OFDM signal,' Wireless Pers. Commun., vol. 4, no. 1, pp. 93-101, Jan. 1997 https://doi.org/10.1023/A:1008859022405
  23. D. Kim and G. L. Stuber, 'Clipping noise mitigation for OFDM by decision-aided reconstruction,' IEEE Commun. Lett., vol. 3, pp. 4-6, Jan. 1999 https://doi.org/10.1109/4234.740112
  24. X. Wang, T. T. Tjhung, and C. S. Ng, 'Reduction of peak to average power ratio of ODFM system using a companding technique,' IEEE Trans. Broadcast., vol. 45, pp. 303-307, Sept. 1999 https://doi.org/10.1109/11.796272
  25. N. Chaudhary and L. Cao, 'Non-symmetric decompanding for improved performance of companded OFDM systems,' IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 2803-2806, Aug. 2007 https://doi.org/10.1109/TWC.2007.06098
  26. D. Di Zenobio, G. Santella, and F. Mazzenga, 'Adaptive linearization of power amplifier in orthogonal multicarrier schemes,' in Proc. IEEE Wireless Commun. Syst. Symp., Nov. 1995, pp. 225-230
  27. G. Baudoin and P. Jardin, 'Adaptive polynomial pre-distortion for linearization of power amplifiers in wireless communications and WLAN,' in Proc. IEEE lnt Conf. Trends in Commun., vol.1, July 2001, pp. 157-160
  28. H. Besbes and T. Le-Ngoc, 'A fast adaptive predistorter for nonlinearly amplified M-QAM signals,' in Proc. IEEE GLOBECOM, vol.1, Nov. 2000, pp.l08-112
  29. Y. Ding, L. Sun, and A. Sano, 'Adaptive nonlinearity predistortion schemes with application to OFDM system,' in Proc. IEEE Control Applications, vol. 2, June 2003, pp. 1130-1135 https://doi.org/10.1109/CCA.2003.1223169
  30. M. Jin, S. Kim, D. Oh, and J. Kim, 'Reduced order RLS polynomial predistortion,' in Proc. IEEE ISCAS, vol. 4, May 2003, pp. 333-336 https://doi.org/10.1109/ISCAS.2003.1205841
  31. M. C. Chiu, C. H. Zeng, and M. C. Liu, 'Predistorter based on frequency domain estimation for compensation of nonlinear distortion in OFDM systems,' IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 882-892, Mar. 2008 https://doi.org/10.1109/TVT.2007.905620
  32. J. A. Davis and J. Jedwab, 'Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,' IEEE Trans. lnf. Theory, vol. 45, no. 7, pp. 2397-2417, Nov. 1999 https://doi.org/10.1109/18.796380
  33. H. Leε and S. W. Golomb, 'A new construction of 64-QAM Golay complementary sequences,' IEEE Trans. lnf. Theory, vol. 52, no. 4, pp. 1663-1670, Apr. 2006 https://doi.org/10.1109/TIT.2006.871616
  34. D.-W. Lim, S.-J. Heo, J.-S. No, and H. Chung, 'On the phase sequence set of SLM OFDM scheme for a crest factor reduction,' IEEE Trans. Signal Process., vol. 54, no. 5, pp. 1931-1935, May 2006 https://doi.org/10.1109/TSP.2006.871979
  35. S. G. Kang and J. G. Kim, 'A novel subblock partition scheme for partial transmit sequence OFDM,' IEEE Trans. Broadcast. , vol. 45, no. 3, pp 333-338, Sept. 1999 https://doi.org/10.1109/11.796276
  36. J. Tellado and J. M. Cioffi, Multicarrier Modulation with Low PAR, Application to DSL and Wireless, Boston, MA: Kluwer Academic Publisher, 2000
  37. D. -W. Lim, H.-S. Noh, J.-S. No, and D.-J. Shin, "Near optimal PRT set selection algorithm for tone reservation in OFDM system," IEEE Trans. Broadcast., vol. 54, no. 3, pp. 454-460, Sept. 2008 https://doi.org/10.1109/TBC.2008.2000463
  38. D.L.Jones, 'Peak power reduction in OFDM and DMT via active channel modification,' in Proc. IEEE ACSSC, vol. 2, 1999, pp. 1076-1079 https://doi.org/10.1109/ACSSC.1999.831875
  39. B. S. Krongold and D.L. Jones, 'PAR reduction in OFDM via active constellation extension,' IEEE Trans. Broadcast., vol 49, no. 3, pp. 258-268, Sept. 2002 https://doi.org/10.1109/TBC.2003.817088
  40. A. Saul, 'Generalized active constellation extension for peak reduction in OFDM systems,' in Proc. IEEE ICC, vol. 3, 2005, pp. 1974-1979 https://doi.org/10.1109/ICC.2005.1494684
  41. W. S. Ho, A. S. Madhukumar, and F. Chin, "Peak to average power reduction using partial transmit sequences: A suboptimal approach based on dual layered phase sequencing," IEEE Trans. Broadcast., vol. 49, no. 2, pp. 225-231, June 2003 https://doi.org/10.1109/TBC.2003.813440
  42. C, Tekkanbyram, 'Improved phase factor computation for the PAR reduction of OFDM signals using PTS,' IEEE Commun. Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001 https://doi.org/10.1109/4234.917092
  43. D.-W.Lim, S.-J. Heo, J.-S. No, and H. Chung, 'A new PTS OFDM scheme with low complexity for PAPR reduction,' IEEE Trans. Broadcast., vol. 52, no. 1, pp. 77-82, Mar. 2006 https://doi.org/10.1109/TBC.2005.861605
  44. D.-W. Lim, C.-W. Lim, J.-S. No, and H. Chung, "A new SLM OFDM with low complexity for PAPR reduction," IEEE Signal Process. Lett., vol. 12, no. 2, pp. 93-96, Feb. 2005 https://doi.org/10.1109/LSP.2004.840915
  45. S.-J. Heom H.-S. Noh, J.-S. No, and D.-J. Shin, "A modified SLM scheme with low complexity for PAPR reduction of OFDM systems," IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804-808, Dec. 2007 https://doi.org/10.1109/TBC.2007.907063
  46. C.-L. Wang and Y. Ouyang, 'Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,' IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652-4660, Dec. 2005 https://doi.org/10.1109/TSP.2005.859327
  47. D.-W. Lim, H.-S. Noh, H.-B. Jeon, J.-S. No and D.-J. Shin, 'Multi-stage TR scheme for PAPR reduction in OFDM signals,' IEEE Trans. Broadcast., to be published
  48. S. H. Crandall, 'Zero crossings, peaks, and other statistical measures of random responses," J. Acoust. Soc. Amer., vol. 35, no. 11, pp. 1693-1699, Nov. 1963 https://doi.org/10.1121/1.1918790
  49. T. Jiang and G, Zhu, 'Nonlinear' companding transform for reducing peak to average power ratio of OFDM signals,' IEEE Trans, Broadcast., vol. 50, pp. 342-346, Sept. 2004 https://doi.org/10.1109/TBC.2004.834030
  50. T. Jiang, Y. Yang, and Y.-H. Song, 'Exponential companding techniques for PAPR reduction in OFDM systems,' IEEE Trans. Broadcast., vol. 51, no. 2, pp. 244-248, June 2005 https://doi.org/10.1109/TBC.2005.847626
  51. T. Jiang, W. Yao, P. Guo, Y. Song, and D. Qu, 'Two novel nonlinear com panding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems,' IEEE Trans. Broadcasl., vol. 52, no. 2, pp. 268-273, June 2006 https://doi.org/10.1109/TBC.2006.872992
  52. O. Kwon and Y. Ha, 'Multi-carrier PAP reduction method using suboptimal PTS with threshold,' IEEE Trans, Broadcast., vol. 49, no. 2, pp. 232-236, June 2003 https://doi.org/10.1109/TBC.2003.813648
  53. T. May and H. Rohling, 'Reducing the peak to average power ratio in OFDM radio transmission systems,' in Proc. IEEE VTC, May 1998, pp. 2774-2778
  54. H. Nikookar and K. S. Lidsheim, 'Random phase updating algorithm for OFDM transmission with low PAPR,' IEEE Trans, Broadcast., vol. 48, no. 2, pp. 123-128, June 2002 https://doi.org/10.1109/TBC.2002.1021278
  55. S._O. Rice, 'Mathematical analysis of random noise,' Bell Syst. J., vol 23, no. 3, pp. 282-332, July 1944
  56. H. Saedi, M. Sharif, and F. Marvasti, 'Clipping noise cancellation in OFDM systems using oversampled sígnal reconstruction,' IEEE Commun. Lett., vol. 6, pp. 73-75, Feb, 2002 https://doi.org/10.1109/4234.984699