JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

211

New Security Layer for OverLay Networks

Hideki Imai, SeongHan Shin, and Kazukuni Kobara

(Invited Paper)

Abstract: After clarifying the underlying problems in a secure net-
work storage, we introduce two important requirements, leakage-
resilience and availability in higher levels respectively, for data keys
that are used to protect remotely-stored data. As a main contribu-
tion of this paper, we give a new security layer for overlay networks
by proposing a leakage-resilient authentication and data manage-
ment system. In this system, we specifically propose a single mode
and a cluster mode where the latter provides a higher level of both
leakage-resilience and availability for the data key.

Index Terms: Availability, leakage-resilience, network storage.

I. INTRODUCTION

Along with the advances of information processing technolo-
gies, a storage system has become an indispensable part of any
whole systems. Such storage systems include direct-attached
storage, network-attached storage, object storage and storage-
area network. Recently, network storage (e.g., [1], [2]) has be-
come more and more practical in the real world with which a
user can store large amount of data to a remotely-located server
and retrieve the data, whenever they are needed, from anywhere
over insecure networks (i.¢., the Internet).

The most important security issues for network storage are ac-
cess control (i.e., user authentication), data confidentiality (i.e.,
no unauthorized access to data), data integrity (i.e., no unautho-
rized modification of data) and availability of data because the
traditional threats to network storage are physical access to stor-
age, access to network, authorized parties, unauthorized parties
and so on. In the literatare, many works (e.g., [3]-16]) concern-
ing with these issues have been reported for several years. In [3],
Miller et al. proposed a secure network-attached storage system
that utilizes symmetric-key encryptions and keyed hash func-
tions on a raw disk i order to provide data confidentiality and
data integrity, respectively, where the encryption key is stored
on the network storage encrypted with a user’s public key (of
course, the user holds the corresponding private key and a key
for keyed hash functions). In [4], Goh et al. proposed a se-
cure remote file storage system where all file data (encrypted
and signed with a user’s asymmetric encryption key and signa-
ture key) are stored on the server with meta data information.
In [5], Mykletun ef al. proposed several methods to ensure data
integrity by using digital signatures (condensed-RSA and BGLS
[71) in the outsourced database model where any users can make

Manuscript received May 1, 2009.

The authors are with the Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST), 1-
18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021 Japan, email: {h-imai, seong-
han.shin, k-kobara} @aist.go.jp.

The authors are also with the Chuo University, 1-13-27, Kasuga, Bunkyo-ku,
Tokyo 112-8551 Japan.

many queries to the (public) database. In [6], Heitzmann er al.
proposed efficient checking methods of data integrity by using
authenticated skip lists [8] in outsourced storage.

Actually, data confidentiality and data integrity are directly
related to the following problem: How to protect the data key'
that would be used for symmetric-key encryption/decryption al-
gorithms and message authentication codes (or digital signa-
tures)? On the other hand, access control is related to the prob-
lem: Which kind of authenticated key exchange protocol is used
in order to retrieve the data securely from the remote storage
server? Unfortunately, the previous works did not consider these
problems at the same time,

A. Authenticated Key Exchange

Most of the network services require user authentication as
well as secure channels both of which can be accomplished
by using an authenticated key exchange protocol. This proto-
col allows the involving parties to authenticate each other and,
if the authentication is finished successfully, to generate secure
session keys for protecting the subsequent communications be-
tween the parties. Since authenticated key exchange is one of
the important cryptographic primitives, this topic has been stud-
ied extensively so far in the cryptographic community. Some au-
thenticated key exchange protocols, secure against active attacks
(e.g., eavesdropping, messages modification, impersonation,
man-in-the-middle attacks), can be found in EAP [9], [10}],
SSL/TLS [11], {12], IKE [13], [14] and IEEE P1363/1363.2
[15], [16].

At first sight, one may wonder why the above-mentioned
problems should be considered for network storage because se-
cure authenticated key exchange protocols are already available.
The answer can be found below. Note that security of the typ-
ical authenticated key exchange protocols is based on the as-
sumption that the keys/secrets (used for authentication) are com-
pletely secure. Here comes a natural question: What happens if
these keys/secrets are leaked out to an attacker? In fact, leak-
ages of the keys/secrets render the existing authenticated key
exchange protocols to be insecure even if two/more-factor au-
thentication is used (refer to [17]-{19] for an exclusive analy-
sis). More seriously, such leakages are very common in the real
world [20]:

« An attacker can get users’ passwords by using social engi-
neering attacks (e.g., Phishing attacks) or by using a keylog-
ger, implanted on clients.

o Leakage of stored keys/secrets happens because mobile de-
vices (including USB memory) are stolen or lost.

1The data key can be viewed as “root key” from which any functioning keys
(e.g., file encrypting key, MAC key) are derived.

1229-2370/09/$10.00 (© 2009 KICS

212

« A dishonest server administer can easily obtain users’ pass-
words.? This may result in a catastrophe if a user registers
one (or very similar) password to many different servers. Un-
fortunately, that’s the common practice for general users.

In order to cope with active attacks and leakage of stored secrets,
we proposed several types of leakage-resilient authenticated key
exchange protocols [17]-[19] where a user remembers only one
password and additionally stores another secret on client while
communicating with many different servers (e.g., web server,
mail server, ftp). The leakage-resilient authentication protocols
provide a higher level of security over the previous ones in the
sense that leakage of the stored secrets from client and server
does not affect its security. Note that these protocols rely on nei-
ther public-key infrastructures (PKI) nor tamper resistant mod-
ules (TRM) at all.

B. Our Motivation

Our motivation starts from the fact that, if we have to consider
leakage of stored secrets from client and/or server, the security
in network storage should be reconsidered from scratch because
the previous works for data confidentiality and data integrity as-
sume that client has a secure local storage for the keys (used in
the underlying encryption and/or integrity checking schemes).
An intuitive solution might be to design a secure network stor-
age system on top of access control with the leakage-resilient
authentication protocols. However, this solution does not neces-
sarily provide a maximum security of the data.

C. Requirements for Network Storage

Here, we summarize two important requirements for network
storage.

« A higher level of security for data key: A user’s data key
should be secure against active attacks as well as leakage of
stored secrets from client and/or server. This requirement can
be interpreted in that the user’s data should be protected from
untrusted networks, untrusted client’s storage and untrusted
server’s storage.

« Availability of data key: A user’s data key should be
distributed among multiple parties so that the user can
recover the key even if some parties are unavailable
or physically-broken. This requirement enables the user’s
(confidentiality/integrity-preserving) data to be stored at any
untrusted servers.

D. Our Approach

In order to protect a user’s data from various kinds of at-
tacks, we take a novel approach by explicitly incorporating the
leakage-resilient authentication protocol [19] into a data man-
agement system. As we explained in Section I-A, the leakage-
resilient authentication protocol provides a higher level of se-
curity against active attacks as well as leakage of stored secrets
over previous ones. The main idea is that 1) a user generates
his/her data key dk, which would be used to encrypt/decrypt

2In the case of hashed low-entropy password, the server administrator can find
out the correct password with off-line dictionary attacks.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

Client

Server

Client
Database

Fig. 1. Single mode.

personal data by using symmetric-key encryption/decryption al-
gorithms (e.g., AES) and/or to generate message authentication
codes of the data, and then divide the key into two parts cdk
(to be stored on client) and sdk (to be stored on server); 2) In
the setup, the user registers both the partial data key sdk and the
authentication secret (needed in the leakage-resilient authenti-
cation protocol) to a server; and 3) In the actual protocol exe-
cution, the user and the server mutually authenticate each other
and, if the authentication is successful, share a common secret
that is used to not only generate a session key but also update the
current stored secrets (including the partial data keys) with new
ones. With this approach, we can also achieve a higher level of
security for the data key as the leakage-resilient authentication
protocol [19] holds. For example, the data key remains hidden
even if the stored secrets of client and server are leaked out with
each exposed in a different time slot. See the subsequent sec-
tions for more details.

In order to provide availability of the data key, we propose
a cluster mode for the leakage-resilient authentication and data
management system where the data key is distributed among
three parties such that any pair of (legitimate) parties can recover
the key at any time. At the cost of availability, the cluster mode
becomes somewhat complicated because synchronization of the
three parties should be maintained at all times.

E. Organization

In Section II, we propose a single mode for the leakage-
resilient authentication and data management system which
guarantees a higher level of security for the data key. Section
III is devoted to explaining a cluster mode that is designed to
provide availability of the data key based on the single mode.
Finally, concluding remarks are presented in Section I'V.

II. A LEAKAGE-RESILIENT AUTHENTICATION AND
DATA MANAGEMENT SYSTEM (SINGLE MODE)

In this section, we propose a single mode for the leakage-
resilient authentication and data management system (see Fig.
1). Actually, this is the same scenario as considered in [19]
where each pair of client and server communicate through open
networks and the client (resp., the server) maintains stored se-
crets on memory (resp., database).

Before going into the sub-protocols, we first explain some
notation that will be used throughout this paper (see Table 1).
For the complete description, we fix a one-way hash function to

IMAI et al.. NEW SECURITY LAYER FOR OVERLAY NETWORKS

Table 1. Some notation.

Notation Meaning

uid/cid/sid user/client/server id

peid/hpeid index for key block, and one-time ID

W user’s password

cs/ss client/server authentication secret

msk mask for RSA ciphertext

dk user’s data key

dkmsk mask for data key

cdk/sdk client/server partial data key where
dk=cdk®sdkPddkmsk

(e,d,n) RSA public key PK=(e, n) and
RSA private key SK=(d, n)

RSAE(M) | RSA encryption of message M with PK

RSAD(C) RSA decryption of ciphertext C with SK

E_k_iv(...) symmetric-key encryption with key k and
initial vector iv (e.g., AES-CBC mode)

D_k_iv(...) | symmetric-key decryption with key k and
initial vector iv (e.g., AES-CBC mode)

H(..) secure one-way hash function

HMAC(...) | keyed-hashing for message authentication
code (MAC)

Random(c) | arandom number is chosen from space ¢
or ¢’s length

agb bit-wise exclusive-OR operation of a and b

allb concatenation of a and b

a#b aisnotequal tob

reject terminate with error

SHA-256 [21], a keyed-hashing to HMAC-SHA256 [22], and an
RSA public-key encryption [23] to RSA-2048 that uses a 2048-
bit RSA modulus n. In a one-way hash function, we assign the
first 8-bit input as a preamble value in order to produce a differ-
ent output.

A. Overall Transition Flow

In this subsection, we explain how a single mode for the
leakage-resilient authentication and data management system
works (see Figs. 2 and 3).

There are two types of setup: easy setup and usual setup. In
easy setup, a server generates a disposable (short) password® and
registers it to its database along with some public information
(i.e., uid, cid and sid). Then, a pair of client and server performs
the initialization protocol and the DK/SEC update protocols. In
usual setup, a server generates client’s stored secrets and its own
secrets where the former is securely handed over to a user and
the latter is stored in the database. Note that these secrets include
a necessary information for the leakage-resilient authentication
protocol, however, the user’s password is not registered at this
moment. Then, a pair of client and server performs the regular
protocol and the PWD/DK update protocols. The setup is done
only once and, if it is finished successfully, the client and the
server are ready to perform the regular protocol at any time.

3Depending on a situation, the password can be chosen by a user.

213

Setup?

Yes Yes

Easy Setup |

i :

1 Register disposable PW ‘ \|/ ‘ Register stored secret &
l No }

1 Initialization protocol l ‘Regular protocol (j=0)|

l

| PWDIDK update protocol
|

52>

‘ DK/SEC update protocol
]
Regular protocol (j>0)

Fig. 2. The flow chart (setup).

!

’ Regular protocol (j>0) '

PK update protocol 1

Fig. 3. The flow chart (j-th protocol execution).

After the setup, the client and the server would perform the
regular protocol with the respective stored secrets. In the reg-
ular protocol, if they agree to update password/data key/PK,
the corresponding update protocols (i.e., PWD/DK/PK update
protocols) are followed. Note that all update protocols should
be done securely. This is possible because messages of these
update protocols are exchanged through secure channels, estab-
lished between the client and the server by running the initializa-
tion and regular protocols. Specifically, if both parties authenti-
cate each other, they can share a master secret (ms) from which
a MAC key (mk) for integrity check, and a symmetric-key (sk)
and an initial vector (iv) for confidentiality are generated. These
shared secrets are used to realize secure channels between the
client and the server. From here on, we briefly explain each sub-
protocol.

214

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

Client

[Negotiation phase]

Version

Version

RunMode+KeyExchangeSuite

Server

uid, cid, sid, e, loop

heid=H(0x06[cid||uid)

r=Random(256bit)

For i=1 to loop,
y_i=H(0x17|[loop | r[|i]|0x00)|l....||H(0x17||loop |t i| 0x07)
y_i’=RSAE(x_i)

If y_i#£y_i’, reject.

end_for

[Authentication phase]

hpw=H(0x20|/pw/||uid)
msk=H(0x21||lhpw||n||0x00)||....|H(0x21|/hpw]|n[0x07)
pms=Random(n) where 1<pms<n-1

z=msk x RSAE(pms) mod n

ms=H(0x22 | pms|[sid||cid| uid||n| z||hpw)
mk=H(0x27{|ms)

ve=HMAC(mk,0x23{ ms||0x00)
vs=HMAC(mk,0x24||ms]||0x01)

If vs#vs’, reject.

sk=H(0x26| ms), iv=H(0x25||ms)

“OK”

[Challenge/response phase for verifying RSA public key]

heid

x_1,....x_loop

“OK”

——

’ vs’=HMAC (mk,0x24/(|ms||0x01)

uid, cid, sid, e, loop, hpw

If heid£H(0x06]|cid||uid), reject.
Generate RSA private key (d,n)

For i=1 to loop,
y_i=H(0x17 || loop||r}i||0x00)|....[H(0x17|]loop]||r||i] 0x07)
x_i=RSAD(y_i)

end_for

msk=H(0x02|/hpw||n||0x00)||....||H(0x02 | hpw]||n||0x07)

pms=RSAD(z/msk mod n)
ms=H(0x22|/pms||sidl|cid||uid| n||z||hpw)
mk=H(0x27||ms)

ve’=HMAC (mk,0x23||ms||0x00)

If ve£ve’, reject.
sk=H(0x26||ms), iv=H(0x25|/ms)

Fig. 4. Initialization protocol (continue to Fig. 5).

A.1 Initialization Protocol

The initialization protocol is designed for easy setup where a
user just remembers a disposable password and the correspond-
ing server stores a hashed value (hpw) of the password (see Figs.
4 and 5). This disposable password is only valid for a short pe-
riod of time in order to avoid Denial-of-Service (DoS) attacks.

In the negotiation phase, a pair of client and server de-
termines which version of the protocol and which “Run-

Mode+KeyExchangeSuite” would be used subsequently. Here,
“RunMode+KeyExchangeSuite” is fixed to the setup of sin-
gle mode. In the challenge/response phase, the client verifies
whether an RSA modulus n, received from the server, is cor-
rectly generated or not. Specifically, 1) the server generates
“loop” number of full-domain hash (FDH) signatures [24], [25]
of random number r, chosen by the client, with the RSA private
key SK=(d,n) and sends them to the client; and 2) if all the sig-
natures are verified, then the client moves to the next phase. In

IMAI et al.: NEW SECURITY LAYER FOR OVERLAY NETWORKS

Client Server

over secure channels using sk/iv
wlv « iv where wlv is Working IV
E_sk_wlv(body), HMAC(mk,0x10||sk||wIv||E_sk_wIv(body))
wlv=H(Ox 1 1||wlv||nTrans) where nTrans is Transaction counter

“HELLG CLIENT”

-

“HELLO SERVER”

pecid_1=Random(256bit)
hpcid_1=H(0x00]/pcid_1)

hpeid_1

B

. reply_1 reply_1="HPCID Updated”
Store peid_1 UGS A
reply_2="Update OK” reply_2

SEC update protocol

If hpeid_1 conflicts in DB, reject.
Store hpeid_1

DK update protocol (j=0)

-

If PK change,
finalmsg1="UPPK” finalmsg 1
_ If finalmsg1="UPPK”,
finalmsg2 finalmsg2="0K PK”
[PK update protocol]

pcid_1,cs_1,n,e, cdk_1

@cid_l, ss_1,n,d, sdk_41\

Fig. 5. Initialization protocol (continue from Fig. 4) where the enclosed values in the rectangle represent stored secrets of client and server,
respectively.
Client Server
Input pw’
cpw=H(0x03||pw’ ||uid)
cs_l=Random(256bit)
ss_1=H(0x04||cpw||sid||cid)écs_1 ss_1
Store ss_1

Store ¢s_1
reply_2="Update OK”

reply_1

reply_2

reply_1="SEC Updated”

Remove hpw

Fig. 6. SEC update protocal.

fact, this phase is crucial because without this phase an attacker
can obtain significant information about the password {26]. The
efficient parameters for “loop” can be determined by the result
of [27]: loop=5 when e=257, loop=3 when e=12289, loop=2
when e=1179649, and loop=1 when e=2748779069441.% In the
authentication phase, the client first encrypts a randomly-chosen
pre-master secret pms with the RSA public key PK=(e,n) and
then masks the ciphertext with msk, computed from the dispos-
able password. The resultant value z is sent to the server. As the
server knows the correct mask value and the RSA private key

4When e=3, loop=26.

SK=(d,n), the pms and its derivative value (ms) are shared be-
tween the client and the server. After authenticating each other,
they additionally generate a symmetric-key sk and an initial vec-
tor iv for message confidentiality, and a MAC key mk for data
integrity. Note that these secrets can realize secure channels be-
tween the client and the server. Through the established secure
channels, the client registers a one-time 1D hpcid_1 to the server,
and also performs the secret update (SEC update), the data key
update (DK update) and/or the public key update (PK update)
protocols.

216 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009
Client Server
[Negotiation phase]

Version
Version

RunMode+KeyExchangeSuite

[i-th (j>1) Authentication phase]

[peid_j, es_j, n, e, cdk_j |

cpw=H(0x03||pw||uid)
ss_j=H(0x04||cpw/||sid||cid)Pes_j
msk=H(0x07|ss_jl|0x00)]....||H(0x07||ss_j||0x07)
pms=Random(n) where 1<pms<n-1

z=msk x RSAE(pms) mod n

ms=H(0x01 | pms||sid||cid||uid| z||pcid_j||ss_j)
mk=H(0x0al||ms)

ve=HMAC(mk,0x02||ms ||0x00)
vs=HMAC(mk,0x02||ms||0x01)

If vs#£vs’, reject.

sk=H(0x0b||ms), iv=H(0x0c||ms)
uss=H(0x0d||ms)
usdk=H(0x0e||ms]||0x00)[....|| H(0xO0e| ms||0x04)

“OK”

z, peid_j

’ vs’=HMAC(mk,0x02||ms||0x01)

[hpeid_j, ss_j, n, d, sdk_j |

msk=H(0x07||ss_j|| 0x00)]|...||H(0x07 ||ss_j||0x07)

If hpeid_j£H(0x00]|peid_j), reject.
pms=RSAD(z/msk mod n)
ms=H(0x01 || pms||sid||cid||uid||z|| pcid_j||ss_j)
mk=H(0x0a||ms)
ve’=HMAC(mk,0x02||ms||0x00)

If ve#£ve’, reject.

sk=H(0x0b|\ms), iv=H(0x0c|\ms)
uss=H(0x0d||ms)

usdk=H(0x0e||ms||0x00)||....|| H(0xO¢||ms||0x04)

Fig. 7. Regular protocol (continue to Fig. 8) where the enclosed values in the rectangle represent stored secrets of client and server, respectively.

A.2 SEC Update Protocol

In the SEC update protocol, the user registers his/her pass-
word pw’ to the server (see Fig. 6). In fact, the user registers
a combined value ss_1 of a randomly-chosen number cs_1 and
pw’ to the server. At the end of this protocol, the client stores the
secret ¢cs_1 on memory and the server holds the authentication
secret ss_1 on its database.

A.3 Regular Protocol

The regular protocol can be used for usual setup (j=0) and for
the j-th (j>1) protocol execution (see Figs. 7 and 8). Actually,
this protocol is an extension of [19] in the sense that an authen-
ticated client can recover the data key dk from his/her partial
data key (cdk_j) and server’s partial data key (sdk_j), transmit-
ted through secure channels. That is, dk=cdk_j&sdk_jedkmsk
where dkmsk is a data-key mask computed from the password
pw and uid. Note that the current stored secrets of client and
server should be updated (overwritten) securely only if all the
session transactions complete successfully.

In the negotiation phase, a pair of client and server de-
termines which version of the protocol and which “Run-

Mode+KeyExchangeSuite” would be used subsequently. If j=0,
“RunMode+KeyExchangeSuite” is fixed to the setup of sin-
gle mode. If j>1, “RunMode+KeyExchangeSuite” is fixed to
the regular protocol of single mode. At the start of the j-
th (j>1) authentication phase, the client stores j-th secrets
(pcid_j,cs_j.n,e,cdk_j) on memory and the server holds the
corresponding secrets (hpcid_j,ss_j,n,d,sdk_j) on its database.
First, the client encrypts a randomly-chosen pre-master secret
pms with the RSA public key PK=(e,n) and then masks the ci-
phertext with msk, computed from the password pw and the
stored secret cs_j. The resultant value z and the one-time id
pcid_j are sent to the server. As the server holds the authenti-
cation secret ss_j and the RSA private key SK=(d,n), the pms
and its derivative value (ms) are shared between the client and
the server. After authenticating each other, they additionally
generate a symmetric-key sk and an initial vector iv for mes-
sage confidentiality, a MAC key mk for data integrity, and
update secrets (uss and usdk) for the current stored secrets.
As we already explained before, the sk, iv and mk realize
secure channels between the client and the server. Through
the established secure channels, the server sends the current
partial data key sdk_j to the client, who can easily retrieve

IMAI et al.: NEW SECURITY LAYER FOR OVERLAY NETWORKS

217

Client

over secure channels using sk/iv
wlv «— iv where wlv is Working IV
E_sk_wIv(body), HMAC(mk,0x10|sk||wiv||E_sk_wIv(body))
wlv=H(0x11||wlv||nTrans) where nTrans is Transaction counter

“HELLO CLIENT”

Server

“HELLO SERVER”

dkmsk=H(0x05||cpw||0x00)]...||H(0x05 ||cpw | 0x04)
dk=cdk_jPsdk_jddkmsk

cdk_(j+1)=cdk_jdusdk

cs_(j+1)=cs_jduss

pcid_(j+1)=Random(256bit)
hpcid_(G+1)=H(0x00|/pcid_G+1))

Store {pcid_(j+1), es_(G+1), cdk_(j+1)}
reply_2="Update OK”

If [password/dk/PK] change,

sdk_j

hpcid_(j+1)

reply_1

reply_2

sdk_(j+1)=sdk_jusdk
ss_(j+1)=ss_jPuss

If hpcid_(j+1) conflicts in DB, reject.

If hpcid_(j+1) is not new, reject.

Store {hpcid_(j+1), ss_(G+1), sdk_(j+1)}
reply_1="HPCID/SEC/DK Updated”

Remove {hpcid_j, ss_j, sdk_j}

finalmsg1="[UPPWD/UPDK/UPPK]” finalmsgl "
If finalmsg1="[UPPWD/UPDK/UPPK]”,
finalmsg2 finalmsg?2="[OK PWD/OK DK/OK PK]”
[PWD update protocol]
[DK update protocol]
[PK update protocol]

1 peid_(+1), cs_(j+1), n, e, cdk_(j+1) ‘

ﬁlpcid_(jn), ss_(j+1), n, d, sdk_(i+1) }

Fig. 8. Regular protocol (continue from Fig. 7) where the enclosed values in the rectangle represent stored secrets of client and server, respectively.

the data key dk with cdk_j®sdk_jodkmsk where dkmsk is a
data-key mask computed from the password pw and uid. At
the same time, the client and the server update the current
stored secrets ((cs_j,cdk_j) and (ss_j,sdk_j)) to new stored se-
crets ((cs_(j+1),cdk_(j+1)) and (ss_(j+1),sdk_(j+1))) with uss
and usdk, respectively. In addition, the client registers a one-
time ID hpcid_(j+1) to the server. If the client agrees with the
server to update some information (i.e., password/data key/PK),
the corresponding update protocols would be performed suc-
cessively. If j=0, the PWD update and DK update protocols
should be followed because the initial password is set to empty.
At the end of the j-th (j>1) authentication phase, the client
stores (J+1)-th secrets (pcid_(j+1),cs_(j+1),n,e,cdk_(j+1)) on
memory and the server holds the corresponding secrets (hp-
cid_(j+1),ss_(G+1),n,d,sdk_(j+1)) on its database for the next
session. Note that, if the communications between the client
and the server are disconnected in the updating process, either
party should keep j-th and (j+1)-th stored secrets for the next
authentication.

A.4 PWD Update Protocol

In the PWD update protocol, the user updates the password
pw with a new password pw’ (see Fig. 9). Recall that the pass-
word pw has been used for two different purposes: One is to
generate the authentication secret ss_(j+1) and the other is to
compute the data-key mask dkmsk. The client first computes
ss_(j+1) from the password pw and cs_(j+1), and ss’_(j+1) from
a new password pw’ and a randomly-chosen number cs’_(j+1).
After choosing a random number dkr, the client also computes
dkd=dkr@dkmsk®dkmsk’ where dkmsk (resp., dkmsk’) is the
data-key mask computed from the password pw (resp., pw’).
Then, the client sends (ss_(j+1),ss’_(j+1),dkd) to the server.
Finally, the client and the server update ((cs_(j+1),cdk_(j+1))
and (ss_(j+1),sdk_(j+1))) with ((cs’_(j+1),cdk’_(j+1)) and
(ss’_(j+1),sdk’_(j+1))) where cdk’_(j+1)=cdk_(j+1)&dkr and
sdk’_(j+1)=sdk_(j+1)Pdkd. Of course, one can easily see that
cdk’_(G+Dpsdk’_(j+ éddkmsk’=cdk_(G+1)@dkrdsdk_(j+1) &
dkd®dkmsk’=cdk_(j+D@dkrdsdk_(+1)yPdkrdkmsk@dkmsk’
@dkmsk’=cdk_(j+1)Psdk_(j+1)ddkmsk=cdk_(j+1)Dsdk_G+1)

218

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

Client

Input pw, pw’

cpw=H(0x03||pw | uid)

cpw’=H(0x03 ||pw’||uid)
ss_(j+1)=H(0x04||cpw||sid||cid)&cs_(j+1)
cs’_(j+1)=Random(256bit)
ss’_(j+1)=H(0x04||cpw’ ||sid||cid)es’_(j+1)
dkmsk=H(0x05|/cpw||0x00)l....||H(0x05|/cpw||0x04)
dkmsk’=H(0x05||cpw’[|0x00)||....||H(0x05]|cpw’||0x04)
dkr=Random(1280bit)
dkd=dkr@dkmskPdkmsk’

ss_(j+1), ss’_(j+1), dkd

Server

Store {cs’_(j+1), cdk’_(j+1)=cdk_(j+1)@®dkr}
reply_2="Update OK”

reply_1
reply 2

If ss_(j+1) is correct,
store ss’_(j+1) and reply_1="PWD Updated”.

Store sdk’_(j+1)=sdk_(j+1)dkd
Remove {ss_(j+1), sdk_(+1)}

Fig. 9. PWD update protocol where pw’ is a new password.

Client

Input dk’

cpw=H(0x03||pw||uid)
dkmsk=H(0x05||cpw||0x00)|l....||H(0x05|/cpw || 0x04)
cdk’_(j+1)=Random(1280bit)
sdk’_(j+1)=dk’®cdk’_(j+1)@dkmsk

sdk’_(G+1)

Server

Store cdk’_(j+1)
reply_2="Update OK”

reply_1

reply_2

Store sdk’_(j+1)
reply_1="DK Updated”

Remove sdk_(j+1)

Fig. 10. DK update protocol where dk’ is a new 1280-bit data key.

Client

(e’, ')

Server

Generate RSA key pair {(¢’, n’), (d’,n")}

Store (e’, n’)
reply_1="PK Updated”

Remove (e, n)

reply_1
reply_2

Store (d’, n’)
reply_2="“Update OK”

Fig. 11. PK update protocol where {(¢’,n’), (d',n")} is a new RSA key pair.

®dkmsk=dk.

A.5 DK Update Protocol

In the DK update protocol, the user updates the data key
dk with a new 1280-bit data key dk’ (see Fig. 10). The
client chooses a random number cdk’_(j+1) and computes
sdk’_(j+1)=dk’®cdk’_(j+1)®dkmsk where dkmsk is the data-
key mask computed from the password pw. The sdk’_(j+1) is
sent to the server. Finally, the client and the server update

(cdk_(j+1) and sdk_(j+1)) with (edk’_(j+1) and sdk’_(j+1)), re-
spectively.

A.6 PK Update Protocol

In the PK update protocol, the server updates the RSA
key pair (see Fig. 11). After generating a new RSA key pair
(PK’=(e’,n"),SK’=(d’,n")), the server sends the PK’ to the client.
Finally, the client and the server update (PK and SK) with (PK’
and SK’), respectively.

IMAI et af.: NEW SECURITY LAYER FOR OVERLAY NETWORKS

B. Discussions

This subsection summarizes security analysis and advantages
of the proposed single mode for the leakage-resilient authenti-
cation and data management system,

B.1 Security Analysis

o Security of data key: The single mode of Section II-A
provides a higher level of security for the data key dk.
The data key dk remains information-theoretically secure
even if either the stored secret (i.e., cdk_j) of client or
the stored secret (i.e., sdk_j) of server is leaked out. It is
clear that cdk_j and sdk_j can be viewed as shares of (2,2)-
threshold secret sharing scheme [28]. Another security layer
for the data key is that an attacker can not get any in-
formation about dk from cdk_i and sdk_j where i#j. Sup-
pose that an attacker obtains cdk_j and sdk_(j+1). Since
cdk_jbsdk_(j+D=cdk_jbsdk_jusdk=cdk_jdedk_jddkpd-
kmsk®usdk=dkadkmskpusdk, the data key dk is com-
pletely hidden with the update secret usdk. This also implies
that the already-leaked secret (cdk_j or sdk_j) becomes ob-
solete if a pair of client and server successfully authenticates
each other and update the current stored secrets. The final se-
curity layer for the data key is that, even if an attacker obtains
cdk_j and sdk_j at the same time, the attacker has to do off-
line dictionary attacks on the password pw in order to retrieve
dk.

o Security of password: The single mode provides almost
same level of security for the password pw as that for the
data key dk. The password pw is information-theoretically
secure, even if either the stored secret (i.e., cs_j) of client
or the stored secret (i.e., ss_j) of server is leaked out, be-
cause of the same reason as above. Also, an attacker can not
get any information about pw from cs_i and ss_j where i].
Suppose that an attacker obtains cs_{j+1) and ss_j. Since
cs_(j+ 1)dss_j=cs_jpussDH(0x04||cpw]|sidj|cid)yBes_j=uss@
H(0x04||cpw/|[sid]|cid), the password remains secure with the
update secret uss. Of course, automatic revocation function-
ality of leaked secrets (cs_j or ss_j) is valid as well. If an
attacker obtains all the stored secrets of client and imperson-
ates the client, only serial on-line dictionary attacks are possi-
ble where the attacker tests a password candidate one by one
until the client and the server successfully authenticate each
other. As a final security layer for the password, an attacker
who obtains cs_j and ss_j at the same time should perform
off-line dictionary attacks on the password pw.

¢ Security of session key: As in [19], the security of ses-
sion key sk can be guaranteed against an attacker who ob-
tains either all the stored secrets of client or the RSA pri-
vate key SK of server (refer to Theorem 1 and 2 of [19]). Of
course, the attacker can do any kinds of active attacks {(e.g.,
eavesdropping, messages modification, impersonation, man-
in-the-middle attacks). Unfortunately, if an attacker obtains
the authentication secret ss_j, the attacker can freely imper-
sonate the client after intercepting the first message (z,pcid_j)
from the legitimate client.

+ “Strong” forward secrecy: The singie mode provides for-
ward secrecy in the sense that exposure of the long-term

Site B

(8econdary Server)

Site C (Client)

Fig. 12. Cluster mode.

secrets does not compromise security of the previously-
established session keys (refer to Theorem 4 of [19]). More-
over, “strong” forward secrecy can be guaranteed because
the previous communications remain “private”, as long as the
leakage of stored secrets did not happen, even in the case that
the underlying public-key encryption (i.e., RSA) or its com-
putational problem is completely broken or solved. Suppose
that an attacker obtains all the (j+1)-th stored secrets of client
and server and is trying to compute the j-th session key sk.
The goal of the attacker is to compute the pre-master secret
pms from z with all the available secrets. However, the at-
tacker can not compute the sk because dividing ss_(j+1) into
ss_j and uss is impossible without knowing the pms.

B.2 Advantages

Easy-of-use: Even though a client communicates with many
different servers, a user remembers only one (short) pass-
word. Instead, the number of secrets (stored on client) grows
linearly with the number of servers.

Simple management: The management of the single mode
is simple because it does not need any public-key certificate
and CRL (Certificate Revocation Lists). In addition, this sin-
gle mode is resistant to Phishing attacks since the user always
need to use the password pw and the stored secret cs_j.
Automatic revocation of leaked secrets: As we already ex-
plained above, this functionality is preferable in restricting
the number of on-line dictionary attacks on the password pw.
Computational efficiency on client side: The j-th protocol
execution of the single mode is extremely efficient in terms of
computational cost, required for client, since the RSA public
key encryption can be used with the public exponent e=3 and
thus the total computational cost is just 3 modular multipli-
cations. Also, note that the RSA encryption with e=3 (i.e., 2
modular multiplications) is pre-computable. Therefore, this
single mode can be applied to computationally-restricted mo-
bile phones/devices or PDA.

1II. CLUSTER MODE

A. Each Protocol for Cluster Mode

In Section II, we proposed the single mode for the leakage-

resilient authentication and data management system and

220

showed that it can provide a higher level of security for the data
key dk. Though the single mode is applicable to any kind of
two-party setting, a potential problem is that the user can not
retrieve the data key dk when one of the parties is unavailable
or physically broken/destroyed. In order to provide availability
of the data key, we introduce a cluster mode, for the leakage-
resilient authentication and data management system, which al-
lows a user to recover dk securely even in the case of one party’s
compromise. In the cluster mode, there are three parties (site A,
B, and C) where site A plays a role of server for both site B and
C, site B plays a role of server for site C and a role of client for
site A, and site C plays a role of client for both site A and B (see
Fig. 12). Irrationally, we denote site A and B by primary server
and secondary server, respectively.

As the basic structure is the same as one in the single mode,
we omit the overall transition flow for the cluster mode. The
main difference is that each site has to store two different stored
secrets. For the data key dk, site A stores (sdk_ba,sdk_ca), site
B stores (cdk_ba,sdk_cb) and site C stores (cdk_ca,cdk_cb)
so that the user can retrieve dk from any pair of sites:

dkaddkmsk=cdk_ca®sdk_ca=cdk_cb®sdk_cb=cdk_bafpsdk_ba.

However, the cluster mode would be more complicated than
the single mode because we have to maintain synchronization
among the three parties (i.e., site A, B, and C). Remind that a
higher level of security for the data key can be achieved by up-
dating and synchronizing stored secrets between the client and
the server in the single mode.

From here on, we briefly explain each sub-protocol for the
cluster mode.

A.1 Cluster Initialization Protocol

The cluster initialization protocol is designed for easy setup
where a user just remembers disposable passwords (pw_ca
and pw_cb) and the corresponding servers store hashed values
(hpw_ca and hpw_cb) of each password (see Fig. 13). As in the
initialization protocol, these disposable passwords are only valid
for a short period of time in order to avoid Denial-of-Service
(DoS) attacks.

First, site A and C perform the initialization protocol with
hpw_ca and pw_ca, and then they can generate the stored se-
crets of site A and C. Next, site B and C also perform the ini-
tialization protocol with hpw_cb and pw_cb, and then they can
generate the stored secrets of site B and C. Now, the remain-
ing works of the cluster initialization protocol is to generate the
stored secrets of site A and B, and distribute them securely. Of
course, these works should be done through secure channels, es-
tablished between site A and C and between site B and C.

After choosing a random number pcid_bal and computing
a one-time ID hpcid_1, site C registers hpcid_bal to site A
and pcid_bal to site B. As in the SEC update protocol, site
C chooses a random number cs_bal and computes the corre-
sponding authentication secret ss_bal from the password pw
and cs_bal. Then, the values ss_bal and cs_bal are regis-
tered to site A and B, respectively. As in the DK update
protocol, site C chooses a random number cdk bal and de-
rives sdk_bal=dkcdedk_bal $dkmsk where dkmsk is the data-
key mask computed from the password pw. Then, the values
sdk_bal and cdk_bal are registered to site A and B, respec-

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

tively. Finally, site C completes the cluster initialization pro-
tocol by registering site A’s public key PK_al to site B as in the
PK update protocol. At the end of this protocol, site A and B
hold the stored secrets (hpcid_bal,ss_bal,sdk_bal,SK_al) and
(pcid_bal,cs_bal,cdk_bal PK_al), respectively.

A.2 Cluster Setup Protocol

The cluster setup protocol is used for off-line setup where site
C is off-line but it can be manually setup by site B (see Fig. 14).

First, site A and B perform the regular protocol with the
respective stored secrets, and then they can update the cur-
rent stored secrets with new ones and also realize secure
channels between site A and B. The subsequent message ex-
changes between site A and B should be done securely with
the established secure channels. After generating two pairs
of setup parameter, site B registers the stored secrets (hp-
cid cal,ss cal,sdk_cal) to site A and holds the stored secrets
(hpcid_cbl,ss_cbl,sdk_cbl) on its own database. Finally, site
B registers two stored secrets (pcid_cal,cs_cal,cdk_cal,PK_al)
and (pcid_cb1,cs_cbl,cdk_cb1,PK_bl) to site C off-line.

A.3 Cluster Regular Protocol

The cluster regular protocol can be used for usual setup (j=0)
and for the j-th (j>1) protocol execution (see Fig. 15).

First, site A and C perform the regular protocol with the re-
spective stored secrets, and then they can update the current
stored secrets with new ones, and also realize secure channels
between site A and C. Next, site B and C also perform the regu-
lar protocol with the respective stored secrets, and then they can
update the current stored secrets with new ones, and realize se-
cure channels between site B and C. The remaining works of the
cluster regular protocol is to generate the stored secrets of site
A and B, and distribute them securely. Of course, these works
should be done through secure channels, established between
site A and C and between site B and C.

After choosing a random number pcid_ba(j+1), usdk_ba
and uss_ba, site C computes a one-time ID hpcid_(G+1)
and registers (hpcid_ba(j+1),usdk_ba,uss_ba) to site A and
(pcid_ba(j+1),usdk_ba,uss_ba) to site B. With the received in-
formation (hpcid_ba(j+1),usdk_ba,uss_ba), site A updates (hp-
cid_baj,ss_baj,sdk_baj) with (hpcid_ba(j+1),ss_ba(j+1),sdk_ba
(j+1)) where sdk_ba(j+1)=sdk_bajdusdk_ba and ss_ba(j+1)=
ss_bajduss_ba. In the same way, site B updates (pcid_baj,cs_baj,
cdk_baj) with (pcid_ba(j+1),cs_ba(j+1),cdk_ba(j+1)) where
cdk_ba(j+1) =cdk_bajdusdk_ba and cs_ba(j+1)=cs_bajduss_ba.
If site A, B, and C agree to update some information (i.e., pass-
word/data key/PK), the corresponding update protocols would
be performed successively. At the end of this protocol, site A
and B hold the stored secrets (hpcid_ba(j+1),ss_ba(j+1),sdk_ba(
j+1),SK_a(j+1)) and (pcid_ba(+1),cs_ba(j+1),cdk_ba(j+1),PK_
a(j+1)), respectively.

If j=0, the cluster PWD update and cluster DK update pro-
tocols should be followed because the initial password is set to
empty. As in the regular protocol, if the communications among
site A, B and C are disconnected in the updating process, either
party should keep j-th and (j+1)-th stored secrets for the next
authentication.

IMAI et al.: NEW SECURITY LAYER FOR OVERLAY NETWORKS

221

Site A

hpw_ca

Initialization protocol

Site C

pw_ca, pw_cb

client for A and B

Site B

hpw_cb
Initialization protocol

[pcid_cal, cs_cal, cdk_cal, PK_al '

server for C

[pcid_cbl, cs_cbl, cdk_cbl, PK_bl]

server for C

hpcid_cal, ss_cal, sdk_cal, SK_al ’

hpcid_bal

B ——T

If hpcid_bal conflicts in DB, reject.
Store hpcid_bal

reply_1="HPCID Updated” reply_1

reply_2

ss_bal

e

reply_1

Store ss_bal
reply_1="SEC Updated”

reply_2

sdk_bal

-—

reply_1

Store sdk_bal
reply_1="DK Updated”

reply_2

reply 1
Store SK_al 4p7y
reply_2="Update OK”
server for B

hpcid_bal, ss_bal, sdk_bal, SK_al

reply_2

pcid_bal=Random(2356bit)
hpcid_bal=H(0x00]||pcid_bal)

(SEC update protocol)

Input pw
cpw=H(0x03||pw| uid)
cs_bal=Random(256bit)
ss_bal=H(0x04||cpw|sid||cid)Fcs_bal

(DK update protocol)

Input dk
cpw=H(0x03||pw||uid)
dkmsk=H(0x03||cpw||0x00)}....||H(0x05|/cpw/||0x04)
cdk_bal=Random(1280bit)
sdk_bal=dkdcdk_balPdkmsk

(PK update protocol)

[hpcid_cbl, ss_cbl, sdk_cbl, SK_bl

pecid_bal

—_—

reply_1
——&> Store pcid_bal

reply_2 reply_2="Update OK”

B ———

cs_bal
reply_1
i*’ Store cs_bal

reply_2 reply_2="“Update OK”

-—

cdk _bal

reply_1
——Ly*—> Store cdk_bal

reply_2 reply_2="“Update OK”

PK al

Store PK _al

reply_1 reply_1="PK Updated”

reply_2
client for A
pcid_bal, cs_bal, cdk_bal, PK_al

Fig. 13. Cluster initialization protocol where the enclosed values in the rectangle represent stored secrets of site A, B, and C, respectively.

A4 Cluster PWD Update Protocol

In the cluster PWD update protocol, the user updates the pass-
word pw with a new password pw’ among site A, B, and C (see
Fig. 16). If only one of the servers (site A or B) is available,

the cluster PWD update protocol should not be performed (oth-
erwise, synchronization of the password pw and the data key dk
is broken).

First, site A and C perform the cluster regular and PWD up-
date protocols with the respective stored secrets, and then they

222

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

Site A Site C Site B

server for B client for A

{hpcid_bao, ss_ba0, sdk_ba0, SK_a0) [pcid_bao, cs_ba0, cdk_ba0, PK_ao\
Regular protocol

| hpcid_bal, ss_bal, sdk_bal, SK_aﬂ

bpcid_cal, ss_cal, sdk_cal

[peid_bal, cs_bal, cdk_bal, PK_al |

Generate two pairs of setup parameter
(store on site A), (output as file)
(hpcid_cal, ss_cal, sdk_cal),
(pcid_cal, cs_cal, cdk_cal, PK_al)
(store on site B), (output as file)
(hpcid_cb1, ss_cbl, sdk_cbl),
(pcid_cbl, cs_cbl, cdk_cbl, PK bl)

Store {hpcid_cal, ss_cal, sdk_cal}
reply_1="HPCID/SEC/DK Updated”

reply_1

Store {hpcid_cbl, ss_cbl, sdk_cbl}

off-line setup

Store chid_cal, cs_cal, cdk_cal, PK_al \

and [pcid_cbl, cs_cbl, edk_cbl, PK bl |

reply_2="Update OK”

reply_2

reply_2

server for C
hpcid_cal, ss_cal, sdk_cal, SK_al]

server for C
Epcid_cbl, ss_cbl, sdk_cbl, SK_bl

Fig. 14. Cluster setup protocol where the enclosed values in the rectangle represent stored secrets of site A, B, and C, respectively.

can update the current stored secrets with new ones and also re-
alize secure channels between site A and C. Next, site B and
C also perform the cluster regular and PWD update protocols
with the respective stored secrets, and then they can update the
current stored secrets with new ones and realize secure channels
between site B and C. Because of the cluster regular protocol,
site A and B can update the current stored secrets with new ones
as well. Now, the remaining works of the cluster PWD update
protocol is to update the password pw with a new one pw’ be-
tween site A and B securely. Of course, these works should be
done through secure channels, established between site A and C
and between site B and C.

Recall that the password pw has been used for the au-
thentication secret ss_ba(j+1) and the data-key mask dkmsk.
The site C first computes ss_ba(j+1) from the password
pw and cs_ba(j+1), and ss’_ba(j+1) from a new pass-
word pw’ and a randomly-chosen number cs’_ba(j+1). Af-
ter choosing a random number dkr, site C also computes
dkd=dkr®dkmsk®dkmsk’ where dkmsk (resp., dkmsk’) is
the data-key mask computed from the password pw (resp.,
pw’). Then, site C sends (ss_ba(j+1),ss’_ba(j+1),dkd) to
site A, and sends (cs_ba(j+1),cs’_ba(j+1),dkr) to site B. Fi-
nally, site A and B update (ss_ba(j+1),sdk_ba(j+1)) and
(cs_ba(j+1),cdk_ba(j+1)) with (ss’_ba(j+1),sdk’_ba(j+1)) and
(cs’_ba(j+1),cdk’_ba(j+1)), respectively, where cdk’_ba(j+1)=

cdk_ba(j+1)Pdkr and sdk’_ba(j+1)=sdk_ba(j+1)ddkd. Of course,
one can easily see that cdk’_(j+1)®sdk’_(j+1)@ddkmsk’ =dk.
Note that dkr is used for randomizing dkmsk and dkmsk’.

A.S Cluster DK Update Protocol

In the cluster DK update protocol, the user updates the data
key dk with a new 1280-bit data key dk’ among site A, B, and C
(see Fig. 17). If only one of the servers (site A or B) is available,
the cluster DK update protocol should not be performed (other-
wise, synchronization of the password pw and the data key dk is
broken).

First, site A and C perform the cluster regular and DK update
protocols with the respective stored secrets, and then they can
update the current stored secrets with new ones and also real-
ize secure channels between site A and C. Next, site B and C
also perform the cluster regular and DK update protocols with
the respective stored secrets, and then they can update the cur-
rent stored secrets with new ones and realize secure channels
between site B and C. Because of the cluster regular protocol,
site A and B can update the current stored secrets with new ones
as well. Now, the remaining works of the cluster DK update pro-
tocol is to update the data key dk with a new one dk’ between
site A and B securely. Of course, these works should be done
through secure channels, established between site A and C and
between site B and C. '

IMALl ¢t al.: NEW SECURITY LAYER FOR OVERLAY NETWORKS

{ Site A
server for B
| hpcid_baj, ss_baj, sdk_baj, SK_aj |

Site C

client for A and B

Site B
client for A
\ pcid_baj, cs_baj, cdk_baj, PK_aj

b)cid_caj, cs_caj, cdk_caj, PK_ajJ

server for C

| peid_cbj, cs_cbj, cdk_cbj, PK_bj

server for C

hpcid_caj, ss_caj, sdk_caj, SK_aﬂ

Regular protocol

thcid_cbj, ss_cbj, sdk_cbj, SK_bj

Regular protocol

} peid_ca(j+1), es_ca(j+1), cdk_ca(j+1), PK_a(j-x-m

\ peid_cb(j+1), cs_cb(j+1), edk_cb(j+1), PK_b(j+ M

i hpeid_ca(j+1), ss_ca(§+1), sdk_ca(j+ 1), SK_a(j+1) ‘

hpcid_ba(j+1), usdk_ba, uss_ba

sdk_ba(j+1)=sdk_bajcusdk_ba
ss_ba(j+1)=ss_bajuss_ba

If hpeid_ba(j+1) conflicts in DB, reject.

If hpcid_ba(j+1) is not new, reject.

Store {hpcid_ba(j+1), ss_ba(j+1}, sdk_ba(j+1)}
reply_1="HPCID/SEC/DK Updated”

reply_1

reply_2
Remove {hpcid_baj, ss_baj, sdk_baj}

finalmsgl

If finalmsg1="[UPPWD/UPDK/UPPK]",
finalmsg2="[OK PWD/OK DK/OK PK]”

finalmsg2

peid_ba(+1)=Random(2356bit)
hpeid_ba(j+1)=H(0x00||pcid_ba(j+1))
usdk_ba=Random(1280bit)
uss_ba=Random(256bit)

If [password/dk/PK] change,
finalmsg 1="{UPPWD/UPDK/UPPK}”

[Cluster PWD update protocol]

’ hpcid_cb(j+1), ss_cb(+1), sdk_cb(j+1), SK_b(j+]ﬂ

peid_ba(j+1), usdk_ba, uss_ba

cdk_ba(j+1)=cdk_bajcusdk_ba
cs_ba(j+1)=cs_bajduss_ba

reply_1
Store {pcid_ba(j+1), cs_ba(j+1), cdk_ba(j+1)}
reply_2 reply_2="Update OK”

finalmsg!

R

If finalmsg 1="[UPPWD/UPDK/UPPK]",
finalmsg2="{OK PWD/OK DK/OK PK}”

finalmsg2

s

[Cluster DK update protocol]

[Cluster PK update protocol]

Epcid_ba(jﬂ), ss_ba(j+1), sdk_ba(j+1), SK_a(j+1)]

|£cid_ba(j+1), cs_ba(j+1), cdk_ba(j+1), PK_a(j+1) ’

Fig. 15. Cluster regular protocol where the enclosed values in the rectangle represent stored secrets of site A, B, and C, respectively.

The site C chooses a random number cdk’_ba(j+1) and com-
putes sdk’_ba(+1)=dk’@cdk’_ba(j+1)@dkmsk where dkmsk is
the data-key mask computed from the password pw. Then, site
C sends sdk’_ba(j+1) to site A, and sends cdk’_ba(j+1) to site
B. Finally, site A and B update (sdk_ba(j+1) and cdk_ba(j+1))
with (sdk’_ba(j+1) and cdk’_ba(j+1)), respectively.

A.6 Cluster PK Update Protocol

In the cluster PK update protocol, the primary and secondary
servers (site A and B) update their RSA public keys (PK_a(j+1)
and PK_b(j+1)) with new ones (PK’_a(j+1) and PK’_b(+1))
among site A, B, and C (see Fig. 18).

224

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

Site A

server for B
|Tpcid_baj, ss_baj, sdk_baj, SK_aj}

Site C

client for A and B

Site B

client for A
| peid_baj, cs_baj, cdk_baj, PK_aj |

’ pcid_caj, cs_caj, cdk_caj, PK_aj }

server for C

1pcid_cbj, cs_cbj, cdk_cbj, PK_bj }

server for C

’ hpcid_caj, ss_caj, sdk_caj, SK_aj ‘

Cluster regular+PWD update

‘ hpcid_ba(j+1), ss_ba(j+1), sdk_ba(j+1), SK_a(j+1) ‘

| hpcid_cbj, ss_cbj, sdk_cbj, SK_bj 1

Cluster regular+PWD update

| peid_ba(j+1), cs_ba(j+1), edk_baj+1), PK_a(j+1)|

} peid_ca(+1), cs’_ca(j+1), cdk’_ca(j+1), PK_a(j+1) \

‘ peid_cb(j+1), cs’_cb(j+1), cdk’_cb(+1), PK_b(j+1) 1

\ hpcid_ca(j+1), ss’_ca(j+1), sdk’_ca(j+1), SK_a(j+1) [

ss_ba(j+1), ss’_ba(j+1), dkd
If ss_ba(j+1) is correct,

store ss’_ba(j+1) and
reply_1=“PWD Updated”.

reply_1

———

reply_2

Store sdk’_ba(j+1)=sdk_ba(j+1)ddkd
Remove {ss_ba(j+1), sdk_ba(G+1)}

Input pw, pw’
cpw=H(0x03||pw/||uid), cpw’=H(0x03 | pw’||uid)
ss_ba(j+1)=H(0x04||cpw||sid| cid)Pcs_ba(j+1)
cs’_ba(j+1)=Random(256bit)
ss”_ba(j+1)=H(0x04| cpw’ ||sid||cid)scs’ _ba(j+1)
dkmsk=H(0x05||cpw||0x00)||....]| H(0x05||cpw||0x04)
dkmsk’=H(0x05||cpw’ [|0x00) ||| H(0x05||cpw’ || 0x04)
dkr=Random(1280bit), dkd=dkr@dkmsk®dkmsk’

[hpcid_cb(j+1), ss’_cb(j+1), sdk’_cb(j+1), SK_b(j+1) |

cs_ba(j+1), cs’_ba(j+1), dkr

reply_1
cdk’_ba(j+1)=cdk_ba(+1)®dkr
Store {cs’_ba(j+1), cdk’_ba(+1)}
reply_2 reply_2="Update OK”

Fig. 16. Cluster PWD update protocol where pw’ is a new password and the enclosed values in the rectangle represent stored secrets of site A, B,

and C, respectively.

First, site A and C perform the cluster regular and PK update
protocols with the respective stored secrets, and then they can
update the current stored secrets with new ones and also real-
ize secure channels between site A and C. Next, site B and C
also perform the cluster regular and PK update protocols with
the respective stored secrets, and then they can update the cur-
rent stored secrets with new ones and realize secure channels
between site B and C. Because of the cluster regular protocol,
site A and B can update the current stored secrets with new ones
as well. Now, the remaining works of the cluster PK update pro-
tocol is to update the RSA public key PK_a(j+1) with a new
one PK’_a(j+1) between site A and B securely. Of course, these
works should be done through secure channels, established be-
tween site A and C and between site B and C. Actually, site C
just sends PK’_a(j+1) to site B. Finally, site A and B update
(SK_a(j+1) and PK_a(j+1)) with (SK’_a(j+1) and PK’_a(j+1)),

respectively.

B. Discussions

In this subsection, we discuss availability of the data key and
several security analysis in the cluster mode for the leakage-
resilient authentication and data management system.

B.1 Availability of Data Key

« In collapse of site A: In the regular protocol, the user mutu-
ally authenticates with the secondary server (i.e., site B) by
using the client (i.e., site C) and then recovers the data key dk
as follows: dk=cdk_cbj®sdk_cbjddkmsk. That is, on-line
data key retrieval is possible.

o In collapse of site B: It is similar with the above case.
In the regular protocol, the user mutually authenticates
with the primary server (i.e., site A) by using the client

IMAI et al.: NEW SECURITY LAYER FOR OVERLAY NETWORKS

225

Site A

server for B
hpcid_baj, ss_baj, sdk_baj, SK_aj }

Site C

client for A and B

Site B

client for A
(peid_baj, cs_baj, cdk_baj, PK_aj}

’ pcid_caj, cs_caj, cdk_caj, PK_aj ‘

server for C

1 peid_cbj, cs_cbj, cdk_cbj, PK_bj [

server for C

\hpcid_caj, ss_caj, sdk_caj, SK_aj L

Cluster regular+DK update

| hpeid_ba(j+1), ss_ba(j+1), sdk_ba(j+1), SK_a(j+1) |

‘ hpeid_cbj, ss_cbj, sdk_cbj, SK_bj ‘

Cluster regular+DX update

| peid_baj+1), es_ba(j+1), cdk_ba(j+1), PK_a(j+1) \

’ pecid_ca(j+1), cs_ca(j+1), cdk’_ca(j+1), PK_a(j+1) ‘

| peid_cb(j+1), cs_cb(j+1), ek’ _cb(j+1), PK_b(j+1) |

1hpcid_ca(j+1), ss_ca(j+1), sdk’_ca(j+1), SK_a(j+1) \

sdk’_ba(j+1)

Store sdk’_ba(j+1)

reply_1="DK Updated” reply_1

reply_2
Remove sdk_ba(j+1)

Input dk’
cpw=H(0x03||pw |juid)
dkmsk=H(0x03|/cpw||0x00)||....|[H(0x05]||cpw||0x04)
cdk’_ba(j+1)=Random(1280bit)
sdk’_ba(+1)=dk’&cdk’_ba(G+1)PHdkmsk

]hpcid_cbqﬂ), ss_cb(j+1), sdk’_cb(j+1), SK_b(j+1) ‘

cdk’_ba(+1)

reply_1

Store cdk’_ba(j+1)

reply_2 reply_2="“Update OK”

Fig. 17. Cluster DK update protocol where dk’ is a new 1280-bit data key and the enclosed values in the rectangle represent stored secrets of site

A, B, and C, respectively.

(i.e., site C) and then recovers the data key dk as follows:
dk=cdk_caj®sdk_cajédkmsk. That is, on-line data key re-
trieval is possible.

« In collapse of site C: In order to recover the data key, the user
should go to the secondary server (i.e., site B) and perform
the regular protocol with the primary server (i.e., site A). If
authentication is successful, the user recovers the data key dk
as follows: dk=cdk_baj$sdk_bajddkmsk.

B.2 Security Analysis

« Security of data key: In the cluster mode of Section III-
A, the data key dk is distributed among site A, B and
C such that any pair of parties can recover dk. If the
stored secret of one site (A, B, or C) is leaked out, the
data key dk remains information-theoretically secure. Sup-
pose that an attacker obtains the stored secret (i.e., sdk_baj
and sdk_caj) of site A. Since sdk_baj=dkécdk_bajddkmsk
and sdk_caj=dkéedk_cajddkmsk, the attacker can not
get any information about the data key dk. As in the
single mode, an attacker also can not get any clue
on dk from (cdk_cai,cdk_cbi), (cdk_baj,sdk_cbj), and
(sdk_cak,sdk_bak) where i#£j#k. That means, the stored

secret of each site is leaked out in a different time
slot. Suppose that an attacker obtains (cdk_ca(j-1),cdk_cb(j-
1)), (cdk_baj,sdk_cbj), and (sdk_ca(j+1),sdk_ba(j+1)). One
can easily see that the data key dk is completely hidden with
the update secret usdk. This also implies that the already-
leaked secret (cdk_baj,sdk_cbj) becomes obsolete if site C
(or A) and site B successfully authenticate each other and up-
date the current stored secrets with new ones (i.e., automatic
revocation of leaked secrets). The final security layer for the
data key dk is that, even if an attacker obtains two stored se-
crets from any two sites at the same time, the attacker has to
do off-line dictionary attacks on the password pw in order to
retrieve dk.

Security of password: The cluster mode provides almost
same level of security for the password pw as that for the
data key dk. The password pw is information-theoretically
secure, even if the stored secret of one site (A, B, or C) is
leaked out, because of the same reason as above. Also, an at-
tacker can not get any information about pw from the stored
secrets (cs_cai,cs_cbi), (cs_baj,ss_cbj), and (ss_cak,ss_bak),
leaked in a different time slot, where i#j#k. Suppose
that an attacker obtains (cs_ca(j-1),cs_cb(j-1)) of site C,

226

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

Site A Site C Site B

server for B
lhpcid_baj, ss_baj, sdk_baj, SK_aj \

client for A and B

client for A
| peid_baj, cs_baj, cdk_baj, PK_aj

‘ peid_caj, cs_caj, cdk_caj, PK_aj

server for C ‘ pcid_cbj, cs_cbj, cdk_cbj, PK_bj I server for C

‘ hpcid_caj, ss_caj, sdk_caj, SK_aj ‘

Cluster regular+PK update

\ hpcid_ba(j+1), ss_ba(j+1), sdk_ba(j+1), SK_a(j+1) }

' hpcid_cbj, ss_cbj, sdk_cbj, SK_bj ‘

Cluster regular+PK update

‘ pcid_ba(j+1), cs_ba(j+1), cdk_ba(j+1), PK_a(+1) w

Bcid_ca(]#l), cs_ca(j+1), cdk_ca(j+1), PK’_a(j+1) \

| peid_cb(j+1), cs_cb(j+1), edk_cb(j+1), PK'_b(j+1) |

’hpcid_ca(j+1), ss_ca(j+1), sdk_ca(j+1), SK’_a(j+1) \

reply_1

Store SK’_a(j+1)
reply 2="Update OK” reply 2

\ hpeid_cb(j+1), ss_cb(j+1), sdk_cb(j+1), SK’_b(j+1)|

PK’_a(+1)
Store PK’_a(j+1)
reply_1 reply_1="PK Updated”

reply_2
Remove PK_a(j+1)

Fig. 18. Cluster PK update protocol where (PK'_a(j+1), SK’_a(j+1)) is a new RSA key pair and the enclosed values in the rectangle represent stored

secrets of site A, B, and C, respectively.

(cs_baj,ss_cbj) of site B and (ss_ca(j+1),ss_ba(j+1)) of site
A. It is clear that the password pw remains secure with the
update secret uss. However, the attacker can do serial on-line
dictionary attacks by impersonating site C and site B with
the leaked secrets (cs_ca(j-1),cs_cb(j-1)) and (cs_baj,ss_cbj),
respectively. As we already explained before, these on-line
dictionary attacks are possible until any pair of parties per-
form the cluster regular protocol successfully (i.e., automatic
revocation of leaked secrets). Without any leaked secrets, an
attacker can not do even serial on-line dictionary attacks. As
a final security layer for the password, an attacker who ob-
tains two stored secrets from any two sites at the same time
should perform off-line dictionary attacks on the password
pW.

Security of session key: The security of session key in the
single mode can be easily extended to the cluster mode. Even
though all the stored secrets of site C are leaked out, the se-
curity of session key sk is guaranteed since the success prob-
ability of on-line dictionary attacks is small. If an attacker
obtains the RSA private keys SK_aj (of site A) and SK_bj
(of site B) at the same time, the session key sk is also secure
because the authentication among three sites totally depends
on a high-entropy secret ss. If an attacker obtains the authen-
tication secrets (ss_baj and ss_caj) of site A, the attacker can
impersonate site B and C after intercepting the first message
pcid_baj from site B and pcid_caj from site C, respectively.
If an attacker obtains the authentication secrets (cs_baj and

ss_cbj) of site B, the attacker can impersonate only site C af-
ter intercepting the first message pcid_cbj from site C. Note
that in the last two cases the security of session key is not
guaranteed, however, the attacker can not recover the data
key dk from the leaked secrets.

« “Strong” forward secrecy: The cluster mode also provides
forward secrecy in the sense that exposure of the long-
term secrets does not compromise security of the previously-
established session keys. Moreover, “strong” forward secrecy
can be guaranteed because the previous communications re-
main “private,” as long as the leakage of stored secrets from
any site did not happen, even in the case that the underlying
public-key encryption (i.e., RSA) or its computational prob-
lem is completely broken or solved.

IV. CONCLUSIONS

In this paper, we first clarified the problems for network stor-
age and showed two requirements of the data key (i.e., a higher
level of security and availability). In order to achieve a higher
level of security for the data key, we have proposed the single
mode that is a natural extension of the leakage-resilient authen-
tication protocol, and discussed its security analysis and advan-
tages. For availability of the data key, we have proposed the
cluster mode (based on the single mode) where the key is dis-
tributed among three parties so that any pair of legitimate par-
ties can recover the data key at any time. Though the cluster

IMAI et al.: NEW SECURITY LAYER FOR OVERLAY NETWORKS

mode is more complicated than the single mode, its security is
comparable to that of the single mode so that both modes for
the leakage-resilient authentication and data management sys-
tem provide a maximum level of security against active attacks
as well as leakage of stored secrets from any parties. Finally,
we also stress that our proposed system can work with any pre-
vious specific storage technologies for data confidentiality and
data integrity since it is a solution to the data-key protection and
availability.

REFERENCES

[1]1 Amazon, “Amazon simple storage service (Amazon $3).” [Online]. Avail-
able: hitp://aws.amazon.com/s3

[2] BitTorrent Inc., “BitTorrent.” [Online]. Available: http://www.bittorrent.c-
om

[3]1 E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C. Reed, “Strong
security for network-attached storage,” in Proc. USENIX Conference on
File and Storage Technologies, Jan. 2002,

[4] E. J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Secur-
ing remote untrusted storage,” in Proc. Network and Distributed System
Security, 2003, pp. 131-145.

[5] E.Mykletun, M. Narasimha, and G. Tsudik, “Authentication and integrity
in outsourced databases,” ACM Trans. Storage, vol. 2, no. 2, pp. 107-138,
2006.

[6] A. Heizmann, B. Palazzi, C. Papamanthou, and R. Tamassia, “Efficient
integrity checking of untrusted network storage,” in Proc. 4th ACM Inter-
national Workshop on Storage Security and Survivabiliry, 2008, pp. 43-54.

[71 D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably
encrypted signatures from bilinear maps,” in Proc. Eurocrypt2003, 2003,
LNCS 2656, pp. 416-432.

[8] M. T. Goodrich, R. Tamassia, and A. Schwerin, “Implementation of an au-
thenticated dictioinary with skip lists and commutative hashing,” in Proc.
DARFPA Information Survivability Conference and Exposition 11, 2001,

pp. 68-82.
(91 IETE, “PPP extensible authentication protocol (EAP),” RFC 2284, March
1998.

[10] B. Aboba, L. Blunk, J. Vollbrecht, J. Carison, and H. Levkowetx, “Exten-
sible authentication protocol (EAP),” IETF RFC 3748, June 2004.

[11] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 protocol,” Netscape Co-
mmunication Corp. {Online]. Available: http://wp.netscape.com/eng/ssl3
IETE, “Transport layer security (tls) charter” [Online]. Available:
http://www.ietf.org/html.charters/tls-charter.html

D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” IETF RFC
2409, Nov. 1998. {Online]. Available: http://www.ietf org/rfc/rfc2409.txt
C. Kaufman, “Internet key exchange (IKEv2) protocol,” IETF RFC 4306,
Dec. 2003,

IEEE P1363, “IEEE standard specifications for public key cryptography,”
Nov. 1999.

[16] IEEE P1363.2, “Standard specifications for password-based public key cr-
yptographic techniques.” [Online]. Available: http:/grouper.iece.org/gro-
ups/1363/passwdPK/submissions html

S. H. Shin, K. Kobara, and H. Inai, “Leakage-resilient authenticated key
establishment protocols,” in Proc. Asiacrypt2003, 2003, LNCS 2894, pp.
155-172.

S. H. Shin, K. Kobara, and H. Imai, “A simple leakage-resilient authenti-
cated key establishment protocol, its extensions, and applications,” [EICE
Trans. Fund. Electronics, Commun. and Computer Sciences, vol. E88-A,
no. 3, pp. 736-754, Mar. 2005.

S. H. Shin, K. Kobara, and H. Imai, “An efficient and leakage-resilient
RSA-based authenticated key exchange protocol with tight security reduc-
tion,” IEICE Trans. Fundamentals of Electronics, Communications and
Computer Sciences, vol. E90-A, no. 2, pp. 474-490, 2007.

R. Richardson, “CSI survey 2007: The 12th annual computer crime and se-
curity survey,” Computer Security Institute, http://www.gocsi.com/forms/
csi_survey.jhtml, 2007.

Federal information processing standards publication 180-2, “Secure ha-
sh standard (SHS),” Aug. 2002, [Online]. Available: http://csre.nist.gov/
publications/fips/fips180-2/fips 180-2withchangenotice.pdf

M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash fucntions for mes-
sage authentication,” in Proc. Crypto’96, 1996, LNCS 1109, pp. 1-15.

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120126, 1978.

[12]
[13]
[14]

[15]

(17}

[18]

[19]

[203

[21]

[22]

[23]

[24] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. ACM CCS’93, 1993, pp. 62-73.
M. Beliare and P. Rogaway, “The exact security of digital signatures: How
to sign with RSA and Rablin,” in Proc. Eurocrypt’96, 1996, LNCS 1070,
pp. 399-416.

S. Patel, “Number theoretic attacks on secure password schemes,” in Proc.
IEEE Symposium on Security and Privacy, 1997, pp. 236-247.

S. H. Shin, K. Kobara, and H. Imai, “RSA-based password-authenticated
key exchange, revisited,” IEICE Trans. Inf. Syst., vol. E91-D, no. 5,
pp. 1424-1438, 2008.

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612613, 1979,

[25]

[26]

27

[28]

Hideki Imai was born in Shimane, Japan on May 31,
1943. He received the B.E., MLE., and Ph.D. degrees
in electrical engineering from the University of Tokyo
in 1966, 1968, and 1971, respectively. From 1971 to
1992 he was on the faculty of Yokobama National
University. From 1992 to 2006 he was a Professor
in the Institute of Industrial Science, the University of
Tokyo. In 2006 he was appointed as an Emeritus Pro-
fessor of the University of Tokyo and a Professor of
Chuo University. Concurrently he serves as the Direc-
tor of Research Center for Information Security, Na-
tional Institute of Advanced Industrial Science and Technology. His current
research interests include information theory, coding theory, cryptography, and
information security. From IEICE (the Institute of Electronics, Information and
Communication Engineers), He received Best Book Awards in 1976 and 1991,
Best Paper Awards in 1992, 2003, and 2004, Yonezawa Memorial Paper Award
in 1992, Achievement Award in 1995, Inose Award in 2003, and Distinguished
Achievement and Contributions Award in 2004. He also received Golden Jubilee
Paper Award from the IEEE Information Theory Society in 1998, Wilkes Award
from the British Computer Society in 2007, Official Commendations from the
Minster of Internal Affairs and Communications in June 2002 and from the Min-
ister of Economy, Trade and Industry in October 2002. He was awarded Honor
Doctor Degree by Soonchunhyang University, Korea in 1999 and Docteur Hon-
oris Causa by the University of Toulon Var, France in 2002. He is also the re-
cipient of the Bricsson Telecommunications Award 2005 and the Okawa Prize
2008. He is a member of the Science Council of Japan. He was elected a Fellow
of IEEE, IEICE and IACR (International Association for Cryptologic Research)
in 1992, 2001, and 2007, respectively. He is an IEEE Life Fellow since 2009.
He has chaired many committees of scientific societies and organized a num-
ber of international conferences. He served as the President of the Society of
Information Theory and its Applications in 1997, of the IEICE Engineering Sci-
ences Society in 1998, and of the IEEE Information Theory Society in 2004. He
is currently the Chair of CRYPTREC (Cryptography Techniques Research and
Evaluation Committee of Japan).

SeongHan Shin received the B.S. and M.S. degrees
in computer science from Pukyong National Univer-
sity, Busan, Korea, in 2000 and 2002, respectively.
In 2005, he received his Ph.D, degree in information
and communication engineering, information science
and technology from the University of Tokyo, Tokyo,
Japan. From October 2005 to March 2006, he was a
post-doctoral researcher in the Institute of Industrial
Science, the University of Tokyo. From April 2007
to March 2008, he was a visiting researcher in the In-
stitute of Science and Engineering, Chuo University,
Tokyo, Japan. From April 2006, he has been working for the Research Center
for Information Security, National Institute of Industrial Science and Technol-
ogy, Japan, as a research scientist of the Research Team for Security Fundamen-
tals. From October 2008, he also has been serving as an associate professor in
the Center for Research and Development Initiative, Chuo University, Japan. He
received the CSS Student Paper Award and the IWS2005/WPMC2005 Best Stu-
dent Paper Award in 2003 and 2003, respectively. His research interests include
information security, cryptography and wireless security.

228

Kazukuni Kobara received his B.E. degree in electri-
cal engineering and M.E. degree in computer science
and system engineering from the Yamaguchi Univer-
sity in 1992, 1994, respectively. He also received his
Ph.D. degree in engineering from the University of
Tokyo in 2003. From 1994 to 2000 and 2000 to 2006
he was a technical associate and a research associate
respectively for the Institute of Industrial Science of
the University of Tokyo. In 2006, he joined the Na-
tional Institute of Advanced Industrial Science and
Technology (AIST) where he was the leader of the Re-
search Team for Security Fundamentals in the Research Center for Information
Security (RCIS). Currently he is a chief research scientist at RCIS. His research
interests include cryptography, information and network security. He received
the SCIS Paper Award and the Vigentennial Award from ISEC group of IE-
ICE in 1996 and 2003, respectively. He also received the Best Paper Award of
WISA, the ISITA Paper Award for Young Researchers, the IEICE Best Paper
Award (Inose Award), the WPMC Best Paper Award and the JSSM Best Paper
Award in 2001, 2002, 2003, 2005, and 2006, respectively. He is a Member of
IEICE and JACR. He served as a Member of CRYPTREC (2000—present), the
vice chairperson of WLAN security committee (2003) and the chief investigator
of INSTAC identity management committer (2007-present).

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

