Artificial Injection to Control Saltwater Intrusion in Groundwater-Numerical Study on a Vertical Cross Section

지하수 해수쐐기 제어를 위한 인공주입-연직 2차원 단면 수치실험

  • Hong, Sung-Hoon (Nakdong River Flood Control Office) ;
  • Shi, Lei (School of Civil Engineering, Dong-A University) ;
  • Cui, Lei (School of Civil Engineering, Dong-A University) ;
  • Park, Nam-Sik (School of Civil Engineering, Dong-A University)
  • 홍성훈 (낙동강 홍수통제소) ;
  • 시뢰 (동아대학교 토목공학부) ;
  • 최뢰 (동아대학교 토목공학부) ;
  • 박남식 (동아대학교 토목공학부)
  • Published : 2009.06.30

Abstract

A simulation-optimization model is developed for development of groundwater and control of a saltwater wedge for protecting over-exploiting freshwater pumping wells. To achieve the goal an objective function is developed for three types of wells: freshwater pumping, freshwater injection and saltwater pumping. Integrity of groundwater environment is accounted for by including three indices. Illustrative cross-sectional examples show that both types of barriers can protect freshwater pumping wells from saltwater intrusion. A barrier well operating at the same rate located anywhere within a certain reach can protect a pumping well. However, the location of the reach appears to contradict the common practice of barrier placements. Consideration of the groundwater environment yields a unique optimal location for barrier wells.

해안지역에서 과잉 양수정 보호를 위한 최적 해수쐐기 제어 전산모델을 개발하였다. 최적화 목적함수는 세 가지 종류의 관정에 대하여 유도되었다: 담수 양수, 담수 주입 그리고 해수 양수. 지하수 개발과 쐐기 제어로 인하여 지하수 체에 미치는 영향을 고려하기 위하여 환경인자를 도입하였다. 가상 연직단면에 대한 적용 예에서 담수 인공 주입을 통하여 해수침투로부터 과잉 양수정을 보호할 수 있음을 보였다. 연직 단면 수치실험에서는 주입량 조건이 만족되면 여러 주입 위치에서 동일하게 과잉 양수정을 보호할 수 있는 것으로 나타났다. 그러나 지하수 환경인자를 고려하면 최적 주입위치가 고유하게 결정된다.

Keywords

References

  1. Bruington, A. E. 1968. The Amelioration Or Prevention Of Salt - Water Intrusion In Aquifers - Experience In Los Angeles County, California, 1972. Wastewater Use And Groundwater Recharge In Los Angeles County
  2. Cheng, A. H. -D. and D. Ouazar. 1999. Analytical Solutions. In Seawater Intrusion in Coastal Aquifers- Concepts, Methods and Practices, edited by J. Bear, A.H.-D. Cheng, S. Sorek, D. Ouazar and I. Herrera. Norwell, MA, USA: Kluwer Academic Publishers
  3. Huyakorn, P. S., Y. S. Wu, and N. S. Park, 1996, Multiphase approach to the numerical solution of a sharp interface saltwater intrusion problem, Water Resources Research, 32(1) 93-102 https://doi.org/10.1029/95WR02919
  4. Johnson, T. A. and R. Whitaker. 2002. Alternatives for seawater intrusion control, Los Angeles County, California. In Coastal water resources; proceedings., edited by R. Lesnik John: AWRA - American Water Resources Association. Bethesda, MD, United States
  5. Nellor, M., T. Asano, and J. Crook. 1990. Groundwater Recharge with Reclaimed Water in California
  6. Park, C. -H. and M. M. Aral. 2004. Multi-objective optimization of pumping rates and well placement in coastal aquifers. Journal of Hydrology 290, 80-99 https://doi.org/10.1016/j.jhydrol.2003.11.025
  7. Reichard, E. G. and T. A. Johnson. 2005. Assessment of Regional Management Strategies for Controlling Seawater Intrusion. Journal of Water Resources Planning and Management 131 no. 4, 280-291 https://doi.org/10.1061/(ASCE)0733-9496(2005)131:4(280)
  8. Rose, B. R. 1990. Artificial Groundwater Recharge, Ventura County, California
  9. Schroeder, D., B. Harley, and C. Mejia. 1989. Seawater Intrusion Barrier Evaluated with 3-D Groundwater Models. Water Engineering & Management 136 no. 2, 26-29
  10. Strack, O. D. L. 1976. A single-potential solution for regional interface problems in coastal aquifers. Water Resources Research 12(6), 1165-1174 https://doi.org/10.1029/WR012i006p01165